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Introduction

● Data movement now most important factor in performance/energy 
consumption

● Dominant assumption: accessing a bit anywhere in memory has no quantitative 
difference in cost
○ programming via virtual memory
○ asymptotic time/space complexity

● Why is this issue well-suited for attack?
○ fully automatic solutions brittle/suboptimal as scale/complexity of memory increases
○ urgent demand to reduce energy consumption in computing to address climate crisis
○ death of Moore’s Law -> more specialization, including co-design of application/memory 

implementation
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Memory access complexity

● goals for metric:
○ quantitative and ordinal (optimization)
○ symbolic and parameterized by input (problem size)
○ include effect of caching (hierarchical memory)

● past metrics inadequate?
○ miss ratio, I/O complexity

● our approach:
○ introduce abstract memory hierarchy model
○ use model to build metric
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Past metrics/analyses: why are they inadequate?

● Miss ratio
○ specific to (program, input, cache implementation)
○ rarely symbolic
○ even when symbolic, MRCs non-ordinal

● result: difficult to use miss ratio to analyze/compare algorithms across problem 
sizes

● Effect of hierarchical memory beyond single cache?
● Ordinality?

○ total order on functions?
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Past metrics cont.

● I/O complexity: asymptotic expressions of lower-bound miss count
○ symbolic in cache and program size
○ not precise: big-O notation fails to differentiate between constant factor performance 

differences
○ portability issue: I/O complexity for algorithms derived from difficult ad hoc proofs

●  PLDI ‘20: Automated Derivation of Parametric Data Movement Lower Bounds 
for Affine Programs
○ compiler technique to automatically produce lower bound
○ one approach to solving portability, precision issues

● Ordinality?
● Effect of hierarchical memory?
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Geometric stack

● abstract memory hierarchy model
● infinite level cache hierarchy

○ each level stores a single datum
○ processor resides at level 0
○ behavior generalizes effect of hierarchical 

memory

● two-dimensional planar shape
○ exact shape not important: memory size 

quadratic in distance to processor
○ contrast to classic (Mattson et al. ‘70) stack 

model
○ distance from datum with stack distance n to 

processor: proportionate to √n
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Data movement distance

● DMD complexity: sum of distances in geometric (2D) stack model
○ symbolic in input size
○ ordinal for single input size!

■ geometric stack gave “exchange rate” for misses in caches of different sizes

● quantified by asymptotic equivalence
○ similar to big-O notation, but retains primary factor coefficient
○ additional precision necessary to distinguish access patterns known to be practically different
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Why √n?

● reflects physical (2D) memory layout
● reflects microarchitectural tradeoffs

○ Interpreting distance as cost function:
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● AMD Zen2 architecture, √n: access 
latency vs. stack position

● goodness of fit?
○ unimportant: capturing trend in step 

function, not predicting exact values
○ care about family of functions a*√n

■ total order preserved, DMD ratios 
preserved for DMD = a*√n



Data Movement Distance: Application to simple algorithms 

● proposed metric: DMD
○ use stack distances in 2+ dimensional stack to create “exchange rate” between 

cache misses in caches of different sizes

● two data traversal patterns: cyclic and sawtooth
○ cyclic: abc...mabc...m...
○ sawtooth: abc..m...cbabc…

● two stack algorithms: LRU and OPT
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DMD: Application to simple algorithms cont.

● symbolic measure of data movement 
as function of input size

● time and space complexity unable to 
distinguish
○ difference obvious w.r.t memory systems

● LRU, OPT DMD asymptotically 
equivalent for sawtooth
○ property of great practical interest: better 

caching cannot reduce data movement 
complexity
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Rest of MEMSYS ‘21 position paper

● define memory access optimality through DMD

● prove upper bound on LRU, OPT stacks

● discuss the relationship between memory dimensionality and benefit of 
caching
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Ongoing/Future Work

● application to more algorithms 
○ focus: algorithms where traditional time/space analyses are inadequate to understand 

performance
■ matrix multiplication: naive, recursive, Strassen, tiled...

○ FFT

● applications to performance optimization
○ compiler technique to compute DMD
○ report % improvement of optimization suite w.r.t. data movement

■ “cache oblivious” optimization

● feedback/suggestions welcome!
○ algorithm targets
○ applications
○ related work
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Questions
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