
Portable and Ordinal Memory
Complexity Analyses through Data
Movement Distance

 Wesley Smith Chen Ding
University of Rochester University of Rochester

Introduction

● Data movement now most important factor in performance/energy
consumption

● Dominant assumption: accessing a bit anywhere in memory has no quantitative
difference in cost
○ programming via virtual memory
○ asymptotic time/space complexity

● Why is this issue well-suited for attack?
○ fully automatic solutions brittle/suboptimal as scale/complexity of memory increases
○ urgent demand to reduce energy consumption in computing to address climate crisis
○ death of Moore’s Law -> more specialization, including co-design of application/memory

implementation

2

Memory access complexity

● goals for metric:
○ quantitative and ordinal (optimization)
○ symbolic and parameterized by input (problem size)
○ include effect of caching (hierarchical memory)

● past metrics inadequate?
○ miss ratio, I/O complexity

● our approach:
○ introduce abstract memory hierarchy model
○ use model to build metric

3

Past metrics/analyses: why are they inadequate?

● Miss ratio
○ specific to (program, input, cache implementation)
○ rarely symbolic
○ even when symbolic, MRCs non-ordinal

● result: difficult to use miss ratio to analyze/compare algorithms across problem
sizes

● Effect of hierarchical memory beyond single cache?
● Ordinality?

○ total order on functions?

4

Past metrics cont.

● I/O complexity: asymptotic expressions of lower-bound miss count
○ symbolic in cache and program size
○ not precise: big-O notation fails to differentiate between constant factor performance

differences
○ portability issue: I/O complexity for algorithms derived from difficult ad hoc proofs

● PLDI ‘20: Automated Derivation of Parametric Data Movement Lower Bounds
for Affine Programs
○ compiler technique to automatically produce lower bound
○ one approach to solving portability, precision issues

● Ordinality?
● Effect of hierarchical memory?

5

6

Geometric stack

● abstract memory hierarchy model
● infinite level cache hierarchy

○ each level stores a single datum
○ processor resides at level 0
○ behavior generalizes effect of hierarchical

memory

● two-dimensional planar shape
○ exact shape not important: memory size

quadratic in distance to processor
○ contrast to classic (Mattson et al. ‘70) stack

model
○ distance from datum with stack distance n to

processor: proportionate to √n

7

Data movement distance

● DMD complexity: sum of distances in geometric (2D) stack model
○ symbolic in input size
○ ordinal for single input size!

■ geometric stack gave “exchange rate” for misses in caches of different sizes

● quantified by asymptotic equivalence
○ similar to big-O notation, but retains primary factor coefficient
○ additional precision necessary to distinguish access patterns known to be practically different

8

Why √n?

● reflects physical (2D) memory layout
● reflects microarchitectural tradeoffs

○ Interpreting distance as cost function:

9

● AMD Zen2 architecture, √n: access
latency vs. stack position

● goodness of fit?
○ unimportant: capturing trend in step

function, not predicting exact values
○ care about family of functions a*√n

■ total order preserved, DMD ratios
preserved for DMD = a*√n

Data Movement Distance: Application to simple algorithms

● proposed metric: DMD
○ use stack distances in 2+ dimensional stack to create “exchange rate” between

cache misses in caches of different sizes

● two data traversal patterns: cyclic and sawtooth
○ cyclic: abc...mabc...m...
○ sawtooth: abc..m...cbabc…

● two stack algorithms: LRU and OPT

10

DMD: Application to simple algorithms cont.

● symbolic measure of data movement
as function of input size

● time and space complexity unable to
distinguish
○ difference obvious w.r.t memory systems

● LRU, OPT DMD asymptotically
equivalent for sawtooth
○ property of great practical interest: better

caching cannot reduce data movement
complexity

11

Rest of MEMSYS ‘21 position paper

● define memory access optimality through DMD

● prove upper bound on LRU, OPT stacks

● discuss the relationship between memory dimensionality and benefit of
caching

12

Ongoing/Future Work

● application to more algorithms
○ focus: algorithms where traditional time/space analyses are inadequate to understand

performance
■ matrix multiplication: naive, recursive, Strassen, tiled...

○ FFT

● applications to performance optimization
○ compiler technique to compute DMD
○ report % improvement of optimization suite w.r.t. data movement

■ “cache oblivious” optimization

● feedback/suggestions welcome!
○ algorithm targets
○ applications
○ related work

13

Questions

14

