
Introduction to Ookami supercomputer
Eva Siegmann, Robert Harrison

Institute for Advanced Computational Science, Stony Brook University, USA

CnC 2021: The Thirteenth Annual Concurrent Collections Workshop
27 October 2021

Ookami - 狼

• A computer technology testbed supported by NSF

• Available for researchers worldwide

(excluding ITAR prohibited countries & restricted parties on the EAR entity list)

• Usage is free for non-commercial and limited commercial purposes

2

SBU’s Seawulf

Fugaku #1
Fastest computer in the world

First machine to be fastest in

all 5 major benchmarks:

• Green-500

• Top-500 – 415 PFLOP/s in double

precision – nearly 3x Summit!

• HPCG

• HPL-AI

• Graph-500

• 432 racks
• 158,976 nodes
• 7,630,848 cores
• 440 PF/s dp (880 sp; 1,760 hp)
• 32 Gbyte memory per node
• 1 Tbyte/s memory bandwidth/node
• Tofu-2 interconnect

https://www.r-ccs.riken.jp/en/fugaku 3

https://www.r-ccs.riken.jp/en/fugaku

tl;dr

 “Programmability of a CPU, performance of a GPU”

 Satoshi Matsuoka

• Blazing fast memory
• Easily accessed performance
• New technology path to exascale

4

Ookami

Node

Processor A64FX

#Cores 48

Peak DP 2.76 TOP/s

Memory 32GB@1TB/s

System

#Nodes 176

Peak DP 486 TOP/s

Peak INT8 3886 TOP/s

Memory 5.6 TB

Disk 0.8 PB Lustre

Comms IB HDR-100

5

What is Ookami

• 176 1.8Ghz A64FX compute nodes each with 32GB of high-bandwidth memory and a 512 GB SSD

• Same as in currently fastest machine worldwide, Fugaku

• First open deployment outside Japan

• HPE/Cray Apollo 80

• Ookami also includes:

• 1 node with dual socket AMD Milan (64 cores) with 512 GB memory

and 2 NVIDIA V100 GPUs

• 2 nodes with dual socket Thunder X2 (64 cores) each with 256 GB memory

• 1 node with dual socket Intel Skylake (36 cores) with 192 GB memory

• Delivers ~1.5M node hours per year 6

A64FX NUMA Node Architecture

• Arm V8-64bit

• Supports high calculation performance and low power consumption

• Supports Scalable Vector Extensions (SVE) with 512-bit vector length

• 4 Core Memory Groups (CMGs)

• 12 cores (13 in the FX1000)

• 64KB L1$ per core - 256b cache line

• 8MB L2$ shared between all cores - 256b cache line

• Zero L3$

• 32 (4x8) GB HBM @ 1 TB/s

• PCIe 3 (+ Tofu-3) network
7

Memory Statistics of Typical Jobs

Simakov, White, DeLeon, Gallo, Jones, Palmer, Plessinger, Furlani
“A Workload Analysis of NSF’s Innovative HPC Resources Using
XDMoD,” arXiv:1801.04306v1 [cs.DC], 12 Jan 2018

2017 analysis of XSEDE workload revealed
86% of all jobs need less than 32 GB / node

These 86% of jobs correspond to 85% of the
total XSEDE cpu-hour usage

8

What else

• CentOS 8 operating system

• DUO Authentication

• High-performance Lustre file system (~800TB of storage)

• Slurm workload manager

• Compilers: GNU, Arm, Cray, Fujitsu, Intel, Nvidia

• Continuous growing stack of preinstalled software

• MPI implementations

• Math libraries

• Performance analysis & debugging:

(Arm Forge, Cray, GNU, TAU, ..)

9

Project Phases

● Phase I (year 1)

○ Acquisition, deployment, early user operations, acceptance (technical+formal)

● Phase II (years 2-3)

○ Technology evaluation

■ Emphasis is on users exploring the technology, porting and tuning applications

○ Allocations performed by SBU

● Phase III (years 4-5)

○ Production operations

■ Emphasis shifts to using the machine for production scientific computing

○ Allocations performed by XSEDE with integration into their accounting, etc.
10

Our Goals

● Familiarize users with this new technology

● Achieving high-performance requires detailed knowledge of

○ computer architecture

○ performance analysis and modeling

○ high-performance programming models

● Enable users to make effective use of the resource

○ E.g., switching from serial implementation to a fully-pipelined, vectorized, and threaded version

→ up to 100x speedup

○ E.g. switching compilers → 2 - 10x speedup

11

Projects

• Total: 185 users & 60 projects

• 91.7% projects from within the US

• 8.3% from Europe

• 95% from academia

• Complete list of projects:

https://www.stonybrook.edu/ookami/projects/

12

User Support

• Slack channel

• Ticketing system handled by the HPC support team

• Virtual office hours twice a week (Tue and Thu, each 2 hrs)

• Regular webinars

• Vectorization hackathon, TAU, likwid, XDMoD, etc.

13

Utilization 2021

14

XDMoD

● Open XDMoD: Open Source version for Data Centers

○ Used to measure and optimize performance of HPC centers

● Goal: Optimize Resource Utilization and Performance

○ Provide detailed information on utilization

○ Measure quality of service

○ Measure and improve job and system level performance

● https://ookami.ccr.xdmod.org/

15

https://ookami.ccr.xdmod.org/

Job Viewer: Measuring Job Performance

16

Collect and display detailed

performance data collected

from nodes, e.g.:

● SVE instruction count

● Node power usage

● Memory

QoS: Application Kernels

17

Gromacs Performance Improvement

New version with
SVE support

• Computationally lightweight benchmarks or applications
•Run periodically or on demand to actively measure performance

•Measure system performance from user’s perspective

•Proactively identify underperforming hardware and software

Case Study:

Compiler and math library vectorization

18

Compiler and math library vectorization

small test to explore the ability of toolchains to vectorize code and the resulting performance

representative of many scientific or engineering applications

● Simple: y[i] = 2*x[i] + 3*x[i]*x[i]
● Predicate: if (x[i]>0) y[i]=x[i]
● Math functions:

○ Reciprocal
○ Square root
○ Exponential
○ Sine
○ Power

● Gather: y[i] = x[index[i]]
● Scatter: y[index[i]] = x[i]

Compilers: GNU, Arm, Cray, Fujitsu, Intel
19

Compiler and math library vectorization

● sizes of working vectors were adjusted to collectively fill the L1 cache

● gather/scatter: the index vector was constructed as a random permutation of the entire index space

● short gather/scatter: index vector was constructed by randomly permuting within 128 byte windows

● Results on A64FX (1.8GHz) vs Intel Skylake (Xeon Gold 6140, 2.1GHz base, 3.7GHz boost)

● The clock speed ratio leads to an expected circa 2x ratio of runtime between A64FX and Skylake

20

Compiler and math library vectorization

● Performance: Fujitsu > Cray > Arm / GNU

● Fujitsu ~2 slower than Intel Skylake except for the

predicate operation (~3) and short gather (~1.5)

● A64FX Microarchitecture Manual indicates loads of pairs

of elements of a gather operation fit within an aligned

128-byte window, resulting in a 2-fold speed up

● No acceleration is indicated for scatter operations

21

Compiler and math library vectorization

● Intel, Fujitsu, Cray and ARM compilers vectorized all

loops

● GNU compiler did not vectorize exp, sin, and pow

● Sqrt: Arm and GNU compilers selecting the SVE FSQRT

instruction (which on A64FX is blocking with a 134 cycle

latency for a 512-bit vector)

● Sqrt: Cray and Fujitsu compilers employ Newton

algorithm

● Accuracy not evaluated

22

Key Findings

● Compiler makes a huge performance difference

● In general Cray and Fujitsu deliver best performance

● Arm delivers competitive performance and fully support current

language standards

● GCC optimizes for SVE and A64FX and sometimes generates best

performance, but lack of vector math library

23

Ongoing work

• Investigating PyTorch and TensorFlow

• Porting commonly used science codes

(VASP, QuantumEspresso, OpenFOAM, LAMMPS, etc.)

• Advance testbed projects to production projects

• Prepare for XSEDE allocation and ACCESS transition

24

Get in Contact

Acknowledgement:

• The whole Ookami team

• NSF (grant OAC 1927880)

eva.siegmann@stonybrook.edu

www.stonybrook.edu/ookami

25

