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Ookami - 狼

• A computer technology testbed supported by NSF

• Available for researchers worldwide 

(excluding ITAR prohibited countries & restricted parties on the EAR entity list)

• Usage is free for non-commercial and limited commercial purposes
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SBU’s Seawulf



Fugaku #1 
Fastest computer in the world

First machine to be fastest in

all 5 major benchmarks:

• Green-500 

• Top-500 – 415 PFLOP/s in double 

precision – nearly 3x Summit!

• HPCG

• HPL-AI

• Graph-500

• 432 racks
• 158,976 nodes
• 7,630,848 cores
• 440 PF/s dp (880 sp; 1,760 hp)
• 32 Gbyte memory per node
• 1 Tbyte/s memory bandwidth/node
• Tofu-2 interconnect

https://www.r-ccs.riken.jp/en/fugaku 3
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tl;dr

                                 “Programmability of a CPU, performance of a GPU”

                                         Satoshi Matsuoka

• Blazing fast memory
• Easily accessed performance
• New technology path to exascale
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Ookami 

Node

Processor A64FX

#Cores 48

Peak DP 2.76 TOP/s

Memory 32GB@1TB/s

System

#Nodes 176

Peak DP 486 TOP/s

Peak INT8 3886 TOP/s

Memory 5.6 TB

Disk 0.8 PB Lustre

Comms IB HDR-100
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What is Ookami

• 176 1.8Ghz A64FX compute nodes each with 32GB of high-bandwidth memory and a 512 GB SSD 

• Same as in currently fastest machine worldwide, Fugaku

• First open deployment outside Japan

• HPE/Cray Apollo 80

• Ookami also includes:

• 1 node with dual socket AMD Milan (64 cores) with 512 GB memory 

and 2 NVIDIA V100 GPUs

• 2 nodes with dual socket Thunder X2 (64 cores) each with 256 GB memory

• 1 node with dual socket Intel Skylake (36 cores) with 192 GB memory 

• Delivers ~1.5M node hours per year 6



A64FX NUMA Node Architecture

• Arm V8-64bit

• Supports high calculation performance and low power consumption

•  Supports Scalable Vector Extensions (SVE) with 512-bit vector length

• 4 Core Memory Groups (CMGs)

• 12 cores (13 in the FX1000)

• 64KB L1$ per core - 256b cache line

• 8MB L2$ shared between all cores - 256b cache line

• Zero L3$

• 32 (4x8) GB HBM @ 1 TB/s

• PCIe 3 (+ Tofu-3) network
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Memory Statistics of Typical Jobs

Simakov, White, DeLeon, Gallo, Jones, Palmer, Plessinger, Furlani 
“A Workload Analysis of NSF’s Innovative HPC Resources Using 
XDMoD,” arXiv:1801.04306v1 [cs.DC], 12 Jan 2018

2017 analysis of XSEDE workload revealed
86% of all jobs need less than 32 GB / node

These 86% of jobs correspond to 85% of the 
total XSEDE cpu-hour usage
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What else

• CentOS 8 operating system

• DUO Authentication

• High-performance Lustre file system (~800TB of storage)

• Slurm workload manager

• Compilers: GNU, Arm, Cray, Fujitsu, Intel, Nvidia

• Continuous growing stack of preinstalled software

• MPI implementations

• Math libraries

• Performance analysis & debugging:

(Arm Forge, Cray, GNU, TAU, ..)
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Project Phases

● Phase I (year 1)

○ Acquisition, deployment, early user operations, acceptance (technical+formal)

● Phase II (years 2-3)

○ Technology evaluation

■ Emphasis is on users exploring the technology, porting and tuning applications

○ Allocations performed by SBU

● Phase III (years 4-5)

○ Production operations

■ Emphasis shifts to using the machine for production scientific computing

○ Allocations performed by XSEDE with integration into their accounting, etc.
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Our Goals

● Familiarize users with this new technology

● Achieving high-performance requires detailed knowledge of 

○ computer architecture 

○ performance analysis and modeling

○ high-performance programming models

● Enable users to make effective use of the resource

○ E.g., switching from serial implementation to a fully-pipelined, vectorized, and threaded version  

→ up to 100x speedup

○ E.g. switching compilers → 2 - 10x speedup 
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Projects

• Total: 185 users & 60 projects

•  91.7% projects from within the US

•  8.3% from Europe

•  95% from academia

•  Complete list of projects:

https://www.stonybrook.edu/ookami/projects/
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User Support

• Slack channel

• Ticketing system handled by the HPC support team

• Virtual office hours twice a week (Tue and Thu, each 2 hrs)

• Regular webinars

• Vectorization hackathon, TAU, likwid, XDMoD, etc.
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Utilization 2021

14



XDMoD

● Open XDMoD: Open Source version for Data Centers

○ Used to measure and optimize performance of HPC centers

● Goal: Optimize Resource Utilization and Performance

○ Provide detailed information on utilization

○ Measure quality of service

○ Measure and improve job and system level performance

● https://ookami.ccr.xdmod.org/
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Job Viewer: Measuring Job Performance 
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Collect and display detailed 

performance data collected 

from nodes, e.g.: 

● SVE instruction count

● Node power usage

● Memory



QoS: Application Kernels
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Gromacs Performance Improvement

New version with 
SVE support

• Computationally lightweight benchmarks or applications
•Run periodically or on demand to actively measure performance

•Measure system performance from user’s perspective

•Proactively identify underperforming hardware and software



Case Study:

Compiler and math library vectorization
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Compiler and math library vectorization

small test to explore the ability of toolchains to vectorize code and the resulting performance

representative of many scientific or engineering applications

● Simple: y[i] = 2*x[i] + 3*x[i]*x[i]
● Predicate: if (x[i]>0) y[i]=x[i]
● Math functions:

○ Reciprocal
○ Square root
○ Exponential
○ Sine
○ Power

● Gather: y[i] = x[index[i]]
● Scatter: y[index[i]] = x[i]

Compilers: GNU, Arm, Cray, Fujitsu, Intel
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Compiler and math library vectorization

● sizes of working vectors were adjusted to collectively fill the L1 cache

● gather/scatter: the index vector was constructed as a random permutation of the entire index space

● short gather/scatter: index vector was constructed by randomly permuting within 128 byte windows

● Results on A64FX (1.8GHz) vs Intel Skylake (Xeon Gold 6140, 2.1GHz base, 3.7GHz boost)

● The clock speed ratio leads to an expected circa 2x ratio of runtime between A64FX and Skylake
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Compiler and math library vectorization

● Performance: Fujitsu > Cray > Arm / GNU

● Fujitsu ~2 slower than Intel Skylake except for the 

predicate operation (~3) and short gather (~1.5)

● A64FX Microarchitecture Manual indicates loads of pairs 

of elements of a gather operation fit within an aligned 

128-byte window, resulting in a 2-fold speed up

● No acceleration is indicated for scatter operations
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Compiler and math library vectorization

● Intel, Fujitsu, Cray and ARM compilers vectorized all 

loops

● GNU compiler did not vectorize exp, sin, and pow

● Sqrt: Arm and GNU compilers selecting the SVE FSQRT 

instruction (which on A64FX is blocking with a 134 cycle 

latency for a 512-bit vector)

● Sqrt: Cray and Fujitsu compilers employ Newton 

algorithm

● Accuracy not evaluated
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Key Findings

● Compiler makes a huge performance difference

● In general Cray and Fujitsu deliver best performance

● Arm delivers competitive performance and fully support current 

language standards

● GCC optimizes for SVE and A64FX and sometimes generates best 

performance, but lack of vector math library
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Ongoing work

• Investigating PyTorch and TensorFlow

• Porting commonly used science codes

(VASP, QuantumEspresso, OpenFOAM, LAMMPS, etc.)

• Advance testbed projects to production projects

• Prepare for XSEDE allocation and ACCESS transition
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