#CnC’21 Workshop

PLUSS: Parallel Locality Analysis
using Static Sampling
Fangzhou Liu, Dong Chen, Wesley Smith, Chen Ding

University of Rochester

(@@
Lm\@@/ﬂ!x

IIIIIIIIIII

Motivation

* Two effects of caching:

* Collaborative: One thread brings
the data that will be later reused
by other threads.

* Interfering: One thread brings the
data but never reused by other
threads.

Motivation

* We classify existing models based on their analysis approach and
assumption.

| w/o DATA SHARING w/ DATA SHARING

Trace-based RD [Chandra et al. HPCA’05, Xu et al. CRD [liang et al. PACT’10]
Analysis ISPASS’10] PCT-RD [Li et al. LCPC’17]
fp [Brock et al. ISMM’18] sfp [Luo et al. PPoPP’17]

PPT-SASMM([Barai et al. MEMSYS’20]

Static Analysis [Tolubaeva et al. IPDPSW’14]*
PLUSS [This work]

Key Features of PLUSS

* Computing RD has higher costs
than RI.

* O(nlogn) vs. O(n). [Hu et al,
TOC’18, Yuan et al. TACO’19]

* Trace collection has high
overhead.

* PIN/Cachegrind collects the
memory access trace using a
global lock.

* PPT-SASMM stores the generated
trace, which consumes 967MB —
4.2GB space.

* Modeling the cache
performance using RI.

* Shallow Execution
* Address tracing only

e Lock-free.

* Pre-defined Interleaving [Arafa
et al. ICS’20, Barai et al.
MEMSYS'20]

* No trace storing.

15

Background

* SPS [Chen et al. PLDI’18] analyzed
the program structure through the
intermediate representation (IR)

and generates a special piece of program —» | LoopNest L IR | v — [Program T
code, named sampler. =

* The sampler collects Rls for each
reference using static sampling. i Proaram

Miss Ratio Distribution Program
< Compiler | <

Sampler
Generator

Curve

* For each reference, the sampler A
randomly choose an iteration from Sampling Rate
the iteration space, then it follows
the program flow until it find a reuse.

Background

1. Samplei=5forB[i+1]

2. Sampler begin to traverse i in range [5, 31]

Shallow I [/ =0 I
Execution IE[_6]_; B[7], B[8], A[6] I

| // i=7
| BI71, BI8, BIOI, A7

3. B[i]atiterationi=6forms areuse with
B[i+1], with Rl = 3; back to step 1.

void kernel_jacobi_l1d(double *A,
double *B) {

int 1i;
for (i = 0; i < 32; i++) {

Ali]l] = (B[i] + B[i+1l] + B[i+2])
/ 3.0;

}

Loop {i, [0, 31], +1}

17

When parallelized by OpenMP
directives

* OpenMP directives indicates the Vvoid kernel jacobi_ld(double A,
. double *B) A
parallel loop will be separated

. int 1i;
into chunks, each has 4 #pragma omp paralle num_thread@

iterations; These chunks will be |
distributed to 4 threads using #pragma omp for@ule(stati@
the OpenMP static scheduling for (i = @; i < 32; i++) {
algorithm. Alil = (B[i] + B[i+1] + B[i+2])
- To: [0, 31, [16, 19] /3.0
o T ’ } // end of for loop
4 14, 71, 120, 23] } // end of #pragma omp parallel

T2: [8,11], [24, 27]
_ T3: [12, 15], [28, 31]

} // end of kernel jacobi_1d

18

PLUSS Working pipeline

* PLUSS adds two components in
the Sampler CodeGen module to
handle the loop parallelization.

LoopInfo Analysis

IR
LOOP Nest » ArrayInfo AnalysiS -

Program Tree

Program —

Transformation Abstraction
. etc.

* Chunk Dispatcher: Generates 1
chunks & Does chunk-to-thread : [ChunkDispatcher
mapping R Sampling |

. Miss Ratio Distribution — Program ; Interleaver

* Interleaver: Simulates the thread Carve < LCompiler|* { [Generator| :
1 1 i | RT Search Process |:
interleaving. | Search Process |

e
Sampling Rate

19

Putting together

Chunk Dispatcher tid = (Y pnisize) mod T

[16,19] [20,23] [24,27] [28,31]

}
{TO: ;T1:;T2:;T3:}
! }

‘ Thread Interleaver ‘

| (ref, {i})
‘ RI Search ‘

void kernel_jacobi_1d(double *A,
double *B) {

int 1i;

#pragma omp parallel num_threads(4)
{

#pragma omp for schedule(static, 4)
for (1 = 0; i < 32; i++) {

Ali]l] = (B[i] + B[i+1] + B[i+2])
/ 3.0;

} // end of for loop
} // end of #pragma omp parallel
} // end of kernel jacobi_1d

20

Putting it all together

1. Samplei=>5 for B[i+1], 5 is the
second iteration of the first
chunk of T1.

2. The Interleaver start
traversing the second iteration of
the first chunk in each thread.

B
B[3], B
All], A
B[2], B

3. B[i+1]forms areuse with B[1],

6

7]
5]
6]

, B[10], B[14], // B[i+1]
, B[11], B[15], // B[i+2]
, Al9], A[13], // Al]

, B[9], B[12], // BIi]

with Rl = 12, back to 1.

Chunk Dispatcher

{TO:

'T1: T2 ' T3:

I !

}

Thread Interleaver

| (ref, {i})

RI Search

21

Evaluation

* We implement PLUSS on LLVM 11, and measures both the accuracy
and the efficiency on 21/30 benchmarks from PolyBench.

* We use the binary instrumentation tool, PIN, to collect the baseline Rl
histogram.

* In terms of thread interleaving, we test two models: Uniform
Interleaving and Random Interleaving.

Evaluation - Speed

* When T = 4, PLUSS achieves 1.3, Analysis Cost with different threads
1.7x speedup. 2
e With the thread counts o
increases, the costs of PLUSS [
scales the least. <.
é B h— —h- —— —h——A
g
2
0
T=2 T=4 T=6 T=8 T=10

=@®=P|N =#=PLUSS-Uniform PLUSS-Random

23

Evaluation - Accuracy

We separated the miss ratio
curves into 3 regions and
computes the L1-norm between
two curves (PLUSS vs. PIN) as the
accuracy.

PLUSS Similarity with PIN (Geomean)

Techniqu

C<640B 640B<C C>64KB Overall
es < 64KB
Uniform 80.61% 91.23% 98.69% 96.18%
Random 92.93% 92.90% 98.70% 96.72%

25

Evaluation - Accuracy

—— PIN = == PLUSS-Uniform —-—- PLUSS-Random

1 adi————
arity with PIN (Geomean)

640B<C C>64KB Overall
< 64KB

Miss Ratio
Miss Ratio
Miss Ratio

Miss Ratio

Miss Ratio " Miss Ratio
o =
L o
o
~ %
OH ¥
o
1
<
=
o
>
-
1 =
Miss Ratio ™ Miss Ratio

g 91.23% 98.69% 96.18%
o
w
0
= : e 92.90% 98.70% 96.72%
101 102 10° 10! 102 103

- 2 ° 1—\
m© © m©
S 01 = = 0+ ; ; . r——

10° 10! 1Q? 103 10° 10! 102 10 104
2 14 i S S 1T L
2 . 2 N
A %] w <=
é’ g é, 04 \\.. T

10° 10! 102 103 104 10°
A a A
= = s 0 ! ; -
100 10! 102 103

2 2 2 14
2 g 2
S 01 i ; = s 0+ i

10° 10! 102 103 10° 10! 102 103 10° 10! 102 103

Cache Size Cache Size Cache Size

26

Limitations

e Support SCoP [Tobias et al. IMPACT’11] loop regions only.

* Loop bounds and array subscripts are affined.

* Limited OMP directives support
e static / dynamic scheduling clause, with an optional chunk size.

* Does not consider branch conditions.
* All branches will be considered taken during the Rl search phase.

Potential Application to CnC

* Block size tuning.
» Specify the input size of each step

* Thread affinity tuning.

» Specify the Thread-to-core mapping -> step_tuner::affinity
* Priority tuning.

* Specify the “Locality-dependence “-> step_tuner::priority

28

ﬂ Any Questions?

