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Motivation
• Two effects of caching:
• Collaborative: One thread brings

the data that will be later reused
by other threads.
• Interfering: One thread brings the

data but never reused by other
threads.
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Motivation

w/o DATA SHARING w/ DATA SHARING

Trace-based
Analysis

RD [Chandra et al. HPCA’05, Xu et al.
ISPASS’10]
fp [Brock et al. ISMM’18]

CRD [Jiang et al. PACT’10]
PCT-RD [Li et al. LCPC’17]
sfp [Luo et al. PPoPP’17]
PPT-SASMM[Barai et al. MEMSYS’20]

Static Analysis [Tolubaeva et al. IPDPSW’14]*

• We classify existing models based on their analysis approach and
assumption.

PLUSS [This work]
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Key Features of PLUSS
• Computing RD has higher costs

than RI.
• O(nlogn) vs. O(n). [Hu et al,

TOC’18, Yuan et al. TACO’19]
• Trace collection has high

overhead.
• PIN/Cachegrind collects the

memory access trace using a
global lock.
• PPT-SASMM stores the generated

trace, which consumes 967MB –
4.2GB space.

• Modeling the cache
performance using RI.
• Shallow Execution
• Address tracing only

• Lock-free.
• Pre-defined Interleaving [Arafa

et al. ICS’20, Barai et al.
MEMSYS’20]

• No trace storing.
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Background
• SPS [Chen et al. PLDI’18] analyzed
the program structure through the
intermediate representation (IR)
and generates a special piece of
code, named sampler.
• The sampler collects RIs for each
reference using static sampling.
• For each reference, the sampler
randomly choose an iteration from
the iteration space, then it follows
the program flow until it find a reuse.
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Background
1. Sample i = 5 for B[i+1]
2. Sampler begin to traverse i in range [5, 31]

// i = 5
B[5], B[6], B[7], A[5]
// i = 6
B[6], B[7], B[8], A[6]
// i = 7
B[7], B[8], B[9], A[7]
……

3. B[i]at iteration i = 6 forms a reuse with
B[i+1], with RI = 3; back to step 1.

void kernel_jacobi_1d(double *A,
double *B) {

int i;
for (i = 0; i < 32; i++) {

A[i] = (B[i] + B[i+1] + B[i+2])
/ 3.0;

}
}
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Shallow
Execution

Loop {i, [0, 31], +1}

B
{i}

B
{i+1}

B
{i+2}

A
{i}



When parallelized by OpenMP
directives
• OpenMP directives indicates the

parallel loop will be separated
into chunks, each has 4
iterations; These chunks will be
distributed to 4 threads using
the OpenMP static scheduling
algorithm.

void kernel_jacobi_1d(double *A,
double *B) {

int i;
#pragma omp parallel num_threads(4)
{
#pragma omp for schedule(static, 4)
for (i = 0; i < 32; i++) {

A[i] = (B[i] + B[i+1] + B[i+2])
/ 3.0;

} // end of for loop
} // end of #pragma omp parallel

} // end of kernel_jacobi_1d

T0: [0, 3], [16, 19]

T1: [4, 7], [20, 23]
T2: [8,11], [24, 27]

T3: [12, 15], [28, 31]
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PLUSSWorking pipeline
• PLUSS adds two components in

the Sampler CodeGen module to
handle the loop parallelization.
• Chunk Dispatcher: Generates

chunks & Does chunk-to-thread
mapping
• Interleaver: Simulates the thread

interleaving.

19



Putting together
void kernel_jacobi_1d(double *A,
double *B) {

int i;
#pragma omp parallel num_threads(4)
{
#pragma omp for schedule(static, 4)
for (i = 0; i < 32; i++) {

A[i] = (B[i] + B[i+1] + B[i+2])
/ 3.0;

} // end of for loop
} // end of #pragma omp parallel

} // end of kernel_jacobi_1d

T0 T1 T2 T3

T0 T1 T2 T3

Chunk Dispatcher

Thread Interleaver

RI Search

(ref, {i})
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{T0: ;T1: ;T2: ;T3: }T0 T1 T2 T3

[0,3]

[16,19] [28,31]

[4,7] [8,11] [12,15]

[20,23] [24,27]

𝑡𝑖𝑑 = %𝑖 𝐶ℎ𝑢𝑛𝑘𝑆𝑖𝑧𝑒 𝑚𝑜𝑑 𝑇



Putting it all together
1. Sample i = 5 for B[i+1], 5 is the

second iteration of the first
chunk of T1.

2. The Interleaver start
traversing the second iteration of
the first chunk in each thread.
B[1], B[6], B[10], B[14], // B[i+1]
B[3], B[7], B[11], B[15], // B[i+2]
A[1], A[5], A[9], A[13], // A[i]
B[2], B[6], B[9], B[12], // B[i]
……

3. B[i+1]forms a reuse with B[i],
with RI = 12, back to 1.
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T0 T1 T2 T3
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Thread Interleaver

RI Search
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Evaluation
• We implement PLUSS on LLVM 11, and measures both the accuracy

and the efficiency on 21/30 benchmarks from PolyBench.
• We use the binary instrumentation tool, PIN, to collect the baseline RI 

histogram.
• In terms of thread interleaving, we test two models: Uniform

Interleaving and Random Interleaving.
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Evaluation - Speed
• When T = 4, PLUSS achieves 1.3x,

1.7x speedup.
• With the thread counts

increases, the costs of PLUSS
scales the least.
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Evaluation - Accuracy
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We separated the miss ratio
curves into 3 regions and
computes the L1-norm between
two curves (PLUSS vs. PIN) as the
accuracy.

PLUSS
Techniqu
es

Similarity with PIN (Geomean)

C < 640B 640B < C
< 64KB

C > 64KB Overall

Uniform 80.61% 91.23% 98.69% 96.18%

Random 92.93% 92.90% 98.70% 96.72%
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Limitations
• Support SCoP [Tobias et al. IMPACT’11] loop regions only.
• Loop bounds and array subscripts are affined.

• Limited OMP directives support
• static / dynamic scheduling clause, with an optional chunk size.

• Does not consider branch conditions.
• All branches will be considered taken during the RI search phase.
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Potential Application to CnC
• Block size tuning.
• Specify the input size of each step

• Thread affinity tuning.
• Specify the Thread-to-core mapping -> step_tuner::affinity

• Priority tuning.
• Specify the “Locality-dependence “-> step_tuner::priority
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Any Questions?
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