
DSLs and APIs for
Dataflow Programming

(over the PaRSEC runtime)
Thomas Herault, Joseph Schuchart, George Bosilca, Robert

Harrison, Ed Valeev, Poornima Nookala, et al

C
o
n
c
e
pt
s

• Clear separation of concerns: compiler optimize
each task class, developer describe dependencies
between tasks, the runtime orchestrate the
dynamic execution

• Interface with the application developers through
specialized domain specific languages
(PTG/TTG, Python, insert_task, fork/join, …)

• Separate algorithms from data distribution
• Remove unnecessary control flow

R
un
t
i
m
e

• Portability layer for heterogeneous architectures
• Scheduling policies adapt every execution to the

hardware & ongoing system status
• Data movements between producers and

consumers are inferred from dependencies.
Communications/computations overlap
naturally unfold

• Coherency protocols minimize data movements
• Memory hierarchies (including NVRAM and

disk) integral part of the scheduling decisions

PaRSEC: a generic runtime
system for asynchronous,

architecture aware
scheduling of fine-grained

tasks on distributed
many-core heterogeneous

architectures

• A task-class is somewhat a familiar concept, a pure
function with a well-defined number of terminals
(input and outputs)
• Terminals are tagged with properties R/RW/W/T
• Depending on the DSL the outputs might be made available

at any time
• Task-classes can be extended with multiple incarnations

(CPU, GPU, hierarch, OpenCL, JIT, …)
• The execution device is dynamically selected at runtime

among available incarnations
• Specialized terminals exists (IO, redistributed, compress,

low-rank, push/pull, validate)

• A task is a particular instance of a task-class (i.e. a
task class with a unique task identifier)
• The runtime was designed for tasks with ~10 𝝁sec

granularity
• A collection of tasks and their dependencies is a taskpool

• DSLs generate or populate taskpools
C

BB

PaRSEC concepts: Tasks / Collections / Contexts

A

• A data is the basic logical element used in the
description of the dataflow
• Locations: have multiple coherent copies (remote node,

device, checkpoint)
• Shape: can have different memory layout
• Visibility: only accessible via the most current version of the

data
• State: can be migrated / logged

• Data collections are ensemble of data distributed
among the nodes
• Can be regular (multi-dimensional matrices)
• Or irregular (sparse data, graphs)
• Can be regularly distributed (cyclic-k) or user-defined
• Can be virtual (no content),

• Data View a subset of the data collection used in a particular
algorithm (aka. submatrix, row, column,…)

• A data (version) is a promise, a data collection is a promise, a
data view is a promise

• The promise will be delivered where it is expected by the task
that will use it (distributed, GPU task on GPU, …)

D
at

a
V

ie
w

D
ata C

ollection

A(i,j)

v2

v1

v2

PaRSEC concepts: Tasks / Collections / Contexts

•A PaRSEC context is a distributed
executor extended with a set of
resources (core(s), accelerators,
networks), memory allocators, and
task schedulers
• Multiple contexts could exist

simultaneously, but the runtime does
not police their use of resources

• A given taskpool belongs to a specific
context, and its tasks execute only on
the resources belonging to the context

PaRSEC concepts: Tasks / Collections / Contexts

PaRSEC: task-based runtime system
• PaRSEC:

• A runtime system
• Distributed, accelerated, with

multiple communication
systems

• A programming
environment

• Tools for profiling, debugging
• A set of Domain Specific

Languages / Extensions
• Dynamic Task Discovery

(DTD)
• Parameterized Task Graph

(PTG)
• (SLATE API)
• Templated Task Graph (TTG)

From the PaRSEC runtime perspective
• The runtime is agnostic to the domain specific language

(DSL)
• Different DSL interoperate through the data collections
• The DSL share the infrastructure
• Distributed schedulers
• Communication engine
• Hardware resources
• Data management (coherence, versioning, …)

• They don’t share
• The task structure
• The internal dataflow depiction

int task_hello(parsec_execution_stream_t *es,
 parsec_task_t *this_task)
{
 int *i;
 parsec_dtd_unpack_args(this_task, UNPACK_VALUE, &i);
 printf(“Hello World, my index is %d\n”, *i);
 return PARSEC_HOOK_RETURN_DONE;
}
int discover_tasks()
{
 for(int i = 0; i < 10; i++) {
 parsec_dtd_taskpool_insert_task(dtd_tp, task_hello,
 0, “hellow_world_task”,
 sizeof(int), &i, VALUE,
 0); /* No more arguments
*/
 }
}

Dynamic Task Discovery (DTD)
• Dynamic Task Discovery (DTD) enables

simple DAG expression through sequential
task discovery

• PaRSEC DTD engine builds the DAG of
tasks, based on the dependencies of the
data flow

• The semantics of sequential execution (the
algorithm critical path) are enforced while
keeping a DAG with maximal parallelism

• For distributed execution, all computing
elements need to discover the same DAG,
impairing the runtime scalability

• Only local tasks are kept, and a reference
to last accessors / writers on given data to
track remote dependencies

• The internal data structure representing
the DAG is problem-size dependent, and
task discovery window dependent

aka. insert_task

• Possible for each process to only discover local tasks, but data
consistency must be maintained globally

• Data versioning and caching become a requirement
• Difficult to identify collective patterns
• Selecting the window size is difficult, all data movement must

be known globally (and their order is critically important)

A
0,0 0,1 0,2
1,0 1,1 1,2
2,0 2,1 2,2

QR Factorization (3x3)

for(k = 0; k < SIZE; k++) {
 parsec_insert_task(“GEQRT”,

 DATA_OF(A, k, k), INOUT|AFFINITY,
 DATA_OF(T, k, k), OUTPUT|TILE_RECT)

 for(n = k+1; n < SIZE; n++)
parsec_insert_task(“UNMQR”,

 DATA_OF(A, k, k), INPUT|TILE_L,
 DATA_OF(T, k, k), INPUT|TILE_RECT,
 DATA_OF(A, k, n), INOUT|AFFINITY)

 for(m = k+1; m < SIZE; m++) {
parsec_insert_task(“TSQRT”,

 DATA_OF(A, k, k), INOUT|TILE_U,
 DATA_OF(A, m, k), INOUT|AFFINITY,
 DATA_OF(T, m, k), OUTPUT|TILE_RECT)

for(n = k+1; n < SIZE; n++) {
 parsec_insert_task(“TSMQR”,

 DATA_OF(A, k, n), INOUT,
 DATA_OF(A, m, n), INOUT|AFFINITY,
 DATA_OF(A, m, k), INPUT,
 DATA_OF(T, m, k), INPUT|TILE_RECT)

}
 }
}

DTD: insert_task

0

3

6

1 2

4

7

5

8
9

10 11

12

13

Challenge
• All participating nodes in distributed

setting needs to discover the full
task-graph (consistent view)

• DAG of large problem might not fit in
memory

Solution: Partially Unrolling the
DAG
• Create partial DAG, progress, repeat (sliding

window of DAG)
• How the DAG is described directs the execution

• Memory usage is bound to the size of sliding
window

• Size of window determines how far in future we
can see both locally and remotely (affects
performance)

• There are three types of scenario
• Insert All: Each rank inserts all tasks, and executes only locals
• Select Insert: Each rank inserts only local tasks but iterates over

all tasks.
• Insert Local: Each rank only inserts local tasks.

6144
cores

Fixed task
duration

Weak scaling: Fixed number
of tasks per process

Other DTD optimizations
• Trimming (idea popularized by StarPU)

• Removing remote tasks that do not have any impact locally
• Untying Task Insertion:

• Users can insert task using one specific thread
• Users can also insert task that can insert more tasks in the

runtime, untying any specific thread from the responsibility
of task insertion

• Allow recursive task insertion
• Allow users to generate independent tasks simultaneously
• Eliminates performance drop in case of responsible thread

being de-scheduled by OS
• Communication

• Keep track of data version and cache them remotely to
avoid sending the same version multiple times
• What is the life expectancy of these remote copies ?

• Recycle buffers to optimize memory usage
• PaRSEC Specific Extensions

• Add collective communications, specialized tasks that
operate on a variable number of data

• Implement owner tracks uses – the opposite concept of
tasks trimming

Memory consumption with
and without trimming

SLATE API (templated C++)
• The SLATE-ish API targets

regular algorithms: tile-based
task discovery algorithms with
explicit synchronization and
communications

• Use of templating to manage
multiple precision and data
representations

• Task discovery based on
maintaining the sequential
semantic
• Computing elements need to

discover only local tasks
• Communications and

synchronizations are both
implicit and explicit

• The language/API expresses a
control flow

• Explicit communication
happens within the progress
of these containers and in the
background.

12

• A dataflow description based on data tracking
• A simple affine description of the algorithm can be understood

and translated by a compiler into a control-flow free form
(pure dataflow)

• Abide to all constraints imposed by current compiler technology

Parameterized Task Graph (PTG)

Parameterized Task Graph (PTG)
GEQRT(k)

 k = 0..(MT < NT) ? MT-1 : NT-1)

 : A(k, k)

 RW A <- (k == 0) ? A(k, k)
 : A1 TSMQR(k-1, k, k)
 -> (k < NT-1) ? A UNMQR(k, k+1 .. NT-1) [type = LOWER]
 -> (k < MT-1) ? A1 TSQRT(k, k+1) [type = UPPER]
 -> (k == MT-1) ? A(k, k) [type = UPPER]
 WRITE T <- T(k, k)
 -> T(k, k)
 -> (k < NT-1) ? T UNMQR(k, k+1 .. NT-1)

BODY [type = CPU] /* default */
 zgeqrt(A, T);
END

BODY [type = CUDA]
 cuda_zgeqrt(A, T);
END

Control flow is possible but not
necessary, maximum parallelism

is exposed

Data-dependent problems (where the DAG
structure depends on the data itself) are more challenging

• A concise parameterized dataflow
language, with non-dense iterators
and extended expressions via inlined
C/C++ code to augment the language

• Only local tasks are instantiated:
internal data structures size is
inversely proportional to the number
of nodes

• The language features multiple
collective communication patterns

• Data flows can be typed, to transmit
variable data elements

• Tasks can be specialized to target
specific devices and refined to adapt
to multiple granularities

• Termination mechanism part of the
runtime (counting or distributed
termination detection)

14

Parameterized Task Graph (PTG)

PaRSEC Domain Specific Languages
simplicity flexibilityDynamic Task

Discovery
SLATE –
C++

Parameterized
Task Graph

DTD

PTG

ScaLAPACK

SLATE

SLATE-PaRSEC

Peak

TTG: Motivation

• Some algorithms work on irregular data
• Block-sparse matrices
• Sparse matrices

• Others work on irregular data and the DAG is
data-dependent

• Approximative representation of functions using trees
• PTG is not well suited for the latter case (SLATE

isn’t either)
• DTD has scalability issues

• All processes need to discover a consistent view of the
DAG

• DAG Pruning is sometimes complex to get right for
programmers, especially if the DAG is data-dependent

• TTG: a C++ API to dynamically discover the DAG, with
process-local discovery only

Cholesky in TTG

POTRF(k)

TRSM(m,k) SYRK(k)

GEMM(m, n, k)

m = [k+1, NT)

m = [k+2, NT)
n = [k+1, m)

Cholesky in TTG
● Dense regular matrix
● Tile-based algorithm
● Comparisons:

○ Chameleon: runtime system
StarPU; ‘Sequential Task Flow’ DAG
representation (equivalent to DTD
in PaRSEC)

○ DPLASMA: PaRSEC runtime with
PTG DAG representation

○ SLATE: native SLATE
implementation

○ ScaLAPACK: machine-provided
ScaLAPACK implementation

PaRSEC Domain Specific Languages
simplicity flexibility

Dynamic Task
Discovery

SLATE – C++ Parameterized
Task Graph

Template
Task Graph

Problem scaling on 64 nodes / 3840 cores (tile size 512x512)

Conclusion
• PaRSEC is a distributed task-based runtime system targeting hybrid

large scale platforms
• It supports multiple DAG of tasks input languages / APIs

• Centered around the idea of a task class that features multiple alternative
implementations and can be instantiated into tasks by providing an identifier
• Build a graph of task classes, at compile time or at runtime
• Tasks instantiated during execution unfold the DAG of tasks in a

distributed way
• Data centric runtime: manages data lifecycle and movement for the user

• New interface to program task systems, TTG
• Fully functional over PaRSEC and MADNESS
• Targets irregular applications and C++ environments

• Performance oriented runtime for TTG: PaRSEC
• Work in progress
• performance is on-par with state of the art implementations at reasonable

scale
• Adding accelerator support in TTG

