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• Clear separation of concerns: compiler optimize 
each task class, developer describe dependencies 
between tasks, the runtime orchestrate the 
dynamic execution

• Interface with the application developers through 
specialized domain specific languages 
(PTG/TTG, Python, insert_task, fork/join, …)

• Separate algorithms from data distribution
• Remove unnecessary control flow
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• Portability layer for heterogeneous architectures
• Scheduling policies adapt every execution to the 

hardware & ongoing system status
• Data movements between producers and 

consumers are inferred from dependencies. 
Communications/computations overlap 
naturally unfold

• Coherency protocols minimize data movements
• Memory hierarchies (including NVRAM and 

disk) integral part of the scheduling decisions

PaRSEC: a generic runtime 
system for asynchronous, 

architecture aware 
scheduling of fine-grained 

tasks on distributed 
many-core heterogeneous 

architectures



• A task-class is somewhat a familiar concept, a pure 
function with a well-defined number of terminals 
(input and outputs)
• Terminals are tagged with properties R/RW/W/T 
• Depending on the DSL the outputs might be made available 

at any time
• Task-classes can be extended with multiple incarnations 

(CPU, GPU, hierarch, OpenCL, JIT, …)
• The execution device is dynamically selected at runtime 

among available incarnations
• Specialized terminals exists (IO, redistributed, compress, 

low-rank, push/pull, validate)

• A task is a particular instance of a task-class (i.e. a 
task class with a unique task identifier)
• The runtime was designed for tasks with ~10 𝝁sec 

granularity
• A collection of tasks and their dependencies is a taskpool 

• DSLs generate or populate taskpools
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PaRSEC concepts: Tasks / Collections / Contexts
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• A data is the basic logical element used in the 
description of the dataflow
• Locations: have multiple coherent copies (remote node, 

device, checkpoint)
• Shape: can have different memory layout
• Visibility: only accessible via the most current version of the 

data
• State: can be migrated / logged

• Data collections are ensemble of data distributed 
among the nodes
• Can be regular (multi-dimensional matrices)
• Or irregular (sparse data, graphs)
• Can be regularly distributed (cyclic-k) or user-defined
• Can be virtual (no content), 

• Data View a subset of the data collection used in a particular 
algorithm (aka. submatrix, row, column,…)

• A data (version) is a promise, a data collection is a promise, a 
data view is a promise 

• The promise will be delivered where it is expected by the task 
that will use it (distributed, GPU task on GPU, …)
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•A PaRSEC context is a distributed 
executor extended with a set of 
resources (core(s), accelerators, 
networks), memory allocators, and 
task schedulers
• Multiple contexts could exist 

simultaneously, but the runtime does 
not police their use of resources

• A given taskpool belongs to a specific 
context, and its tasks execute only on 
the resources belonging to the context

PaRSEC concepts: Tasks / Collections / Contexts



PaRSEC: task-based runtime system
• PaRSEC:

• A runtime system
• Distributed, accelerated, with 

multiple communication 
systems

• A programming 
environment

• Tools for profiling, debugging
• A set of Domain Specific 

Languages / Extensions
• Dynamic Task Discovery 

(DTD)
• Parameterized Task Graph 

(PTG)
• (SLATE API)
• Templated Task Graph (TTG)

From the PaRSEC runtime perspective
• The runtime is agnostic to the domain specific language 

(DSL)
• Different DSL interoperate through the data collections
• The DSL share the infrastructure
• Distributed schedulers
• Communication engine
• Hardware resources
• Data management (coherence, versioning, …)

• They don’t share
• The task structure
• The internal dataflow depiction



int task_hello(parsec_execution_stream_t *es,
               parsec_task_t *this_task)
{
  int *i;
  parsec_dtd_unpack_args( this_task, UNPACK_VALUE, &i);
  printf(“Hello World, my index is %d\n”, *i);
  return PARSEC_HOOK_RETURN_DONE;
}
int discover_tasks()
{
  for(int i = 0; i < 10; i++) {
    parsec_dtd_taskpool_insert_task( dtd_tp, task_hello,
                                     0, “hellow_world_task”,
                                     sizeof(int), &i, VALUE,
                                     0); /* No more arguments 
*/
  }
}

Dynamic Task Discovery (DTD)
• Dynamic Task Discovery (DTD) enables 

simple DAG expression through sequential 
task discovery 

• PaRSEC DTD engine builds the DAG of 
tasks, based on the dependencies of the 
data flow 

• The semantics of sequential execution (the 
algorithm critical path) are enforced while 
keeping a DAG with maximal parallelism 

• For distributed execution, all computing 
elements need to discover the same DAG, 
impairing the runtime scalability 

• Only local tasks are kept, and a reference 
to last accessors / writers on given data to 
track remote dependencies 

• The internal data structure representing 
the DAG is problem-size dependent, and 
task discovery window dependent

aka. insert_task

• Possible for each process to only discover local tasks, but data 
consistency must be maintained globally

• Data versioning and caching become a requirement
• Difficult to identify collective patterns
• Selecting the window size is difficult, all data movement must 

be known globally (and their order is critically important)
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QR Factorization (3x3)

for( k = 0; k < SIZE; k++ ) {
    parsec_insert_task( “GEQRT”,

      DATA_OF(A, k, k), INOUT|AFFINITY,
      DATA_OF(T, k, k), OUTPUT|TILE_RECT)

    for( n = k+1; n < SIZE; n++ )
parsec_insert_task( “UNMQR”,

  DATA_OF(A, k, k), INPUT|TILE_L,
  DATA_OF(T, k, k), INPUT|TILE_RECT,
  DATA_OF(A, k, n), INOUT|AFFINITY)

    for( m = k+1; m < SIZE; m++ ) {
parsec_insert_task( “TSQRT”,

  DATA_OF(A, k, k), INOUT|TILE_U,
  DATA_OF(A, m, k), INOUT|AFFINITY,
  DATA_OF(T, m, k), OUTPUT|TILE_RECT)

for( n = k+1; n < SIZE; n++ ) {
    parsec_insert_task( “TSMQR”,

      DATA_OF(A, k, n), INOUT,
      DATA_OF(A, m, n), INOUT|AFFINITY,
      DATA_OF(A, m, k), INPUT,
      DATA_OF(T, m, k), INPUT|TILE_RECT)

}
    }
}

DTD: insert_task
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Challenge
• All participating nodes in distributed 

setting needs to discover the full 
task-graph (consistent view)

• DAG of large problem might not fit in 
memory

Solution: Partially Unrolling the 
DAG
• Create partial DAG, progress, repeat (sliding 

window of DAG)
• How the DAG is described directs the execution

• Memory usage is bound to the size of sliding 
window

• Size of window determines how far in future we 
can see both locally and remotely (affects 
performance)

 

• There are three types of scenario
• Insert All: Each rank inserts all tasks, and executes only locals
• Select Insert: Each rank inserts only local tasks but iterates over 

all tasks.
• Insert Local: Each rank only inserts local tasks. 

6144 
cores

Fixed task 
duration

Weak scaling: Fixed number 
of tasks per process



Other DTD optimizations
• Trimming (idea popularized by StarPU)

• Removing remote tasks that do not have any impact locally
• Untying Task Insertion:

• Users can insert task using one specific thread
• Users can also insert task that can insert more tasks in the 

runtime, untying any specific thread from the responsibility 
of task insertion

• Allow recursive task insertion
• Allow users to generate independent tasks simultaneously
• Eliminates performance drop in case of responsible thread 

being de-scheduled by OS
• Communication

• Keep track of data version and cache them remotely to 
avoid sending the same version multiple times
• What is the life expectancy of these remote copies ?

• Recycle buffers to optimize memory usage
• PaRSEC Specific Extensions

• Add collective communications, specialized tasks that 
operate on a variable number of data

• Implement owner tracks uses – the opposite concept of 
tasks trimming

Memory consumption with 
and without trimming



SLATE API (templated C++)
• The SLATE-ish API targets 

regular algorithms: tile-based 
task discovery algorithms with 
explicit synchronization and 
communications 

• Use of templating to manage 
multiple precision and data 
representations 

• Task discovery based on 
maintaining the sequential 
semantic 
• Computing elements need to 

discover only local tasks 
• Communications and 

synchronizations are both 
implicit and explicit 

• The language/API expresses a 
control flow

• Explicit communication 
happens within the progress 
of these containers and in the 
background. 



12

• A dataflow description based on data tracking
• A simple affine description of the algorithm can be understood 

and translated by a compiler into a control-flow free form 
(pure dataflow)

• Abide to all constraints imposed by current compiler technology

Parameterized Task Graph (PTG)



Parameterized Task Graph (PTG)
GEQRT(k)

 k = 0..( MT < NT ) ? MT-1 : NT-1 )

 : A(k, k)

 RW    A <- (k == 0)    ? A(k, k) 
                        : A1 TSMQR(k-1, k, k)
         -> (k < NT-1)  ? A UNMQR(k, k+1 .. NT-1)  [type = LOWER]
         -> (k < MT-1)  ? A1 TSQRT(k, k+1)         [type = UPPER]
         -> (k == MT-1) ? A(k, k)                  [type = UPPER]
 WRITE T <- T(k, k)
         -> T(k, k)
         -> (k <  NT-1) ? T UNMQR(k, k+1 .. NT-1)

BODY [type = CPU]  /* default */
   zgeqrt( A, T );
END

BODY [type = CUDA]
   cuda_zgeqrt( A, T );
END

Control flow is possible but not 
necessary, maximum parallelism 

is exposed

Data-dependent problems (where the DAG 
structure depends on the data itself) are more challenging 

• A concise parameterized dataflow 
language, with non-dense iterators 
and extended expressions via inlined 
C/C++ code to augment the language

• Only local tasks are instantiated: 
internal data structures size is 
inversely proportional to the number 
of nodes 

• The language features multiple 
collective communication patterns

• Data flows can be typed, to transmit 
variable data elements

• Tasks can be specialized to target 
specific devices and refined to adapt 
to multiple granularities 

• Termination mechanism part of the 
runtime (counting or distributed 
termination detection)
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Parameterized Task Graph (PTG)



PaRSEC Domain Specific Languages
simplicity flexibilityDynamic Task

Discovery
SLATE – 
C++

Parameterized
Task Graph

DTD

PTG

ScaLAPACK

SLATE

SLATE-PaRSEC

Peak



TTG: Motivation

• Some algorithms work on irregular data
• Block-sparse matrices
• Sparse matrices

• Others work on irregular data and the DAG is 
data-dependent

• Approximative representation of functions using trees
• PTG is not well suited for the latter case (SLATE 

isn’t either)
• DTD has scalability issues

• All processes need to discover a consistent view of the 
DAG

• DAG Pruning is sometimes complex to get right for 
programmers, especially if the DAG is data-dependent

• TTG: a C++ API to dynamically discover the DAG, with 
process-local discovery only



Cholesky in TTG

POTRF(k)

TRSM(m,k) SYRK(k)

GEMM(m, n, k)

m = [k+1, NT)

m = [k+2, NT)
n = [k+1, m)



Cholesky in TTG
● Dense regular matrix
● Tile-based algorithm
● Comparisons: 

○ Chameleon: runtime system 
StarPU; ‘Sequential Task Flow’ DAG 
representation (equivalent to DTD 
in PaRSEC)

○ DPLASMA: PaRSEC runtime with 
PTG DAG representation

○ SLATE: native SLATE 
implementation

○ ScaLAPACK: machine-provided 
ScaLAPACK implementation



PaRSEC Domain Specific Languages
simplicity flexibility

Dynamic Task
Discovery

SLATE – C++ Parameterized
Task Graph

Template
Task Graph

Problem scaling on 64 nodes / 3840 cores (tile size 512x512)



Conclusion
• PaRSEC is a distributed task-based runtime system targeting hybrid 

large scale platforms
• It supports multiple DAG of tasks input languages / APIs

• Centered around the idea of a task class that features multiple alternative 
implementations and can be instantiated into tasks by providing an identifier
• Build a graph of task classes, at compile time or at runtime
• Tasks instantiated during execution unfold the DAG of tasks in a 

distributed way
• Data centric runtime: manages data lifecycle and movement for the user

• New interface to program task systems, TTG
• Fully functional over PaRSEC and MADNESS
• Targets irregular applications and C++ environments

• Performance oriented runtime for TTG: PaRSEC
• Work in progress
• performance is on-par with state of the art implementations at reasonable 

scale
• Adding accelerator support in TTG


