
Template Task Graph
An emerging practical dataflow programming

paradigm for scientific simulation

Robert J. Harrison, Mahdi Javanmard, Poornima Nookala

Institute for Advanced Computational Science
Stony Brook University

Edward Valeev

Virginia Tech

George Bosilca and Thomas Herault

Innovative Computing Laboratory
University of Tennessee, Knoxville

robert.harrison@stonybrook.edu

mailto:robert.harrison@stonybrook.edu

2

Outline

• What are TESSE and TTG?

• Motivation

• Exploring a mini-app

• Future work and opportunities for
collaboration

• Ookami

Stony Brook University

• Harrison

University of Tennessee

• Bosilca and Herault

Virginia Tech

• Valeev

An extensible, robust and scalable directed acyclic graph (DAG) execution model
supported by an intelligent and dynamic runtime that can adapt to changing
requirements presented by the evolving numerical theories and HPC platforms.

• TTG (template task graph) is the main initial C++ API.
• Multiple runtimes supported

• Plans for multiple interoperable DSLs and algorithms on distributed data stru3ctures

Task-based environment for scientific
simulation at extreme scale (TESSE)

4

● Extends Parallel Scheduling and Execution

Controller (PaRSEC) to larger classes of

dynamic (data-dependent) computation; data

distribution; compostion and execution of

multiple DAGs

Addresses●

● heterogeneous hardware by runtime

selection between multiple

implementations

heterogeneous data distribution by

separate specification of data and

algorithm, and runtime management of

data motion

heterogeneous task duration through

lightweight scheduling policies

●

●

● Automatic latency hiding enabled by

knowledge of the dataflow of the program to

enable all communications to occur in the

background of the execution itself

PaRSEC: http://icl.cs.utk.edu/parsec/

TESSE extends PaRSEC to irregular apps

http://icl.cs.utk.edu/parsec/

TESSE C++ API and dataflow model

• Driven by

• MADNESS: Algorithms on unbalanced, deep

spatial trees in 1-6 dimensions

• TiledArray: Block-sparse and low-rank algorithms

for tensors with 2-6 or more dimensions

• Sparse linear algebra: element/block/rank sparsity

• Dense linear algebra: original use of PaRSEC

• Related projects – CnC, Legion, Charm++, …

5

MADNESS
• A general purpose numerical

environment for reliable and fast
scientific simulation

– Chemistry, nuclear physics, atomic physics, material
science, nanoscience, climate, fusion, ...

• Want robust and fast algorithms that scale
correctly with system size and are easy to write

• Semantic gap

– Why are equations O(100) lines but
codes O(1M) ?

• Facile path from laptop to exaflop
https://github.com/m-a-d-n-e-s-s/madness

Applications

Numerics

Parallel Ru6ntime

7

Compose directly in terms of
functions and operators

This is a Latex rendering of a
program to solve the Hartree-Fock
equations for the helium atom

The compiler also outputs a C++
code that can be compiled without
modification and run in parallel

Highest-level
DSL

3,2

2,32,22,12,0

1,11,0

0,0

3,3 3,4 3,5 3,6 3,7

Example adaptive tree in Haar basis

• Haar basis is a piecewise constant (like a histogram)

• Not useful for calculation but easy to visualize and of fundamental interest

• Adaptive local refinement until local error measure is satisfied

• Smaller boxes where rate of change is high and value not negligible

• Conventional adaptive mesh corresponds to boxes

• Construct tree connecting fine-scale to coarser-scale boxes

• Boxes labeled with level (n=0,1,...) and translation (l=0,1,...,2n-1)

• Tree-based algorithms for fast computation (in math sense)

8

A Key Component

• Trade precision for speed – everywhere

• Don’t do anything exactly

• Perform everything to O(ε)

• Require

• Robustness

• Speed, and

• Guaranteed, arbitrary, finite precision

• Leads to very irregular and dynamic data

structures and computation on unbalanced trees

• Trees in 3D routinely go down 30+ levels

9

• Generic massively parallel framework for dense and sparse

tensor algebra

State of the art application to electronic structure of

chemistry and materials in Massively Parallel Quantum

Chemistry (MPQC) package

•

• Prototyping platform for DOE Exascale

Chemistry App

Experimental use by research codes, e.g.

ChronusQuantum (Xiaosong Li/UW)

•

• Reduces communication and load imbalance of sparse

tensor algebra using data-driven MADNESS runtime

Development supported in part by the NSF SSI program

(OCI-1047696)

•

TiledArray: http://github.com/ValeevGroup/tiledarray/

TILEDARRAY

10

TESSE will allow:
•

•

•

•

Vastly improved functionality by making it easier to compose complex algorithms

Improved portability (e.g. accelerators)

Improved resource management

Leverage CS community expertise

http://github.com/ValeevGroup/tiledarray/

TILEDARRAY: HIGH-LEVEL DSL

11

expression trees are parsed at compile time,

transformed (op conversion and fusion) and evaluated lazily at runtime

• Structure

• including slicing (.block())

• Arithmetic
•

•

•

+, -, * (Hadamard), scale

Contract (tensor analog of GEMM)

Permutation (tensor analog of transposition)

• Algebra
•

•

•

Conjugate gradient

Direct Inversion of Iterative Subspace (DIIS)

In progress: decompositions (CP, Tucker)

TILEDARRAY: FEATURES

12

+

x y

*

t z

t

r

Key concepts of TESSE dataflow model

• Template task graph (TTG)

• Parameterize each task that will execute the
operation by a TaskId, e.g.,

• a loop index (i) making a separate task for each iteration

• the label of each node in a tree being traversed

• a pair of indices labelling a matrix sub-block

• Avoids describing the entire task DAG which is huge

• The user provides a map from TaskId to where the task will execute

• All data also labeled with TaskId to match with consuming task

• All inputs (arguments) of a task have the same TaskId

• Outputs may have different TaskId to send to different successors

• Through each output terminal a task can

• send data to a specific successor (one key), or

• broadcast to multiple successors (many keys), or

• reduce to an accumulator

13

14

TTG Examples
● Data-parallel loop on vectors

for i : range {

T tmp = f(a[i],b[i]);
d[i] = g(a[i],tmp);

}

● Iterative algorithm

iter = 0;

while (tmp<10 && iter<100) {
iter++; x = f(x);

}

Reading the TTG

• Input terminals at top of operation

• Name of operation in middle

• Output terminals at bottom of operation

• Connect output terminals to input

terminals of successor tasks

• Computation/data flows from

top to bottom

• Pull terminal modifies this

• Recursion represented by

backward edges and cycles

• The TTG is not a DAG

• The executed task graph is a DAG

15

Naïve SUMMA
MxM in TTG

16

TemplateTasks and Tasks
● ATemplateTask describes a set of tasks parameterized by a TaskId

The Terminals of a TemplateTask are placeholders for the

inputs/outputs of a task

void f(TaskId, Arg0, Arg1, ..., OutputTerminals)

●

17

TemplateTasks and Tasks
● ATemplateTask describes a set of tasks parameterized by a TaskId

The Terminals of a TemplateTask are placeholders for the

inputs/outputs of a task

void f(TaskId, Arg0, Arg1, ..., OutputTerminals)

The most general task can contain multiple send/broadcast operations
that conditionally propagate results to successors

– In general, this requires copying data and a split task implementation for GPUs

●

●

18

TemplateTasks and Tasks
● ATemplateTask describes a set of tasks parameterized by a TaskId

The Terminals of a TemplateTask are placeholders for the

inputs/outputs of a task

void f(TaskId, Arg0, Arg1, ..., OutputTerminals)

The most general task can contain multiple send/broadcast operations
that conditionally propagate results to successors

– In general, this requires copying data and a split task implementation for GPUs

A “pure” task sends only at most once to each output terminal and defers
this motion to the runtime by returning results with predicates

std::tuple<R0,R1> f(TaskId, Arg0, Arg1, ...)

where R0=std::pair<bool,Result0>, Result0 is the actual type of

result 0, and the bool determines if the data is to be sent

●

●

●

– Exposes all info to the runtime, avoids copying data, and simplifies use of GPUs

– Closest to PaRSEC PTG --- adds runtime computed predicates, general types

19

Terminals
● Correspond to inputs/outputs of a task

Compose the TTG by connecting inputs and outputs

– Either via providing an Edge to the constructor or by manually connecting

●

20

Terminals
● Correspond to inputs/outputs of a task

Compose the TTG by connecting inputs and outputs

– Either via providing an Edge to the constructor or by manually connecting

By default data are pushed to a successor and terminals act as
single assignment variables

●

●

● The first input argument to arrive causes the task to be instantiated

Once all arguments have arrived, the task is marked ready●

21

Terminals
● Correspond to inputs/outputs of a task

Compose the TTG by connecting inputs and outputs

– Either via providing an Edge to the constructor or by manually connecting

By default data are pushed to a successor and terminals act as
single assignment variables

●

●

● The first input argument to arrive causes the task to be instantiated

Once all arguments have arrived, the task is marked ready●

● Terminals can be marked as pull
● A logically preceding task is instantiated to send the data

– E.g., reading from memory, generating data on the fly, recursive construction

Important optimizations

– Directly call the operation to avoid task overhead

– Greedy (at task creation) or lazy (when all other inputs available) pulling of data to control
resource utilization

●

22

Terminals
● Correspond to inputs/outputs of a task

Compose the TTG by connecting inputs and outputs

– Either via providing an Edge to the constructor or by manually connecting

By default data are pushed to a successor and terminals act as
single assignment variables

●

●

● The first input argument to arrive causes the task to be instantiated

Once all arguments have arrived, the task is marked ready●

● Terminals can be marked as pull
● A logically preceding task is instantiated to send the data

– E.g., reading from memory, generating data on the fly, recursive construction

Important optimizations

– Directly call the operation to avoid task overhead

– Greedy (at task creation) or lazy (when all other inputs available) pulling of data to control
resource utilization

●

● Terminals are programmable

– E.g., general reduction operations, computation on streaming data

20

Examples of send and broadcast

23

Streaming Terminal Example
● MRA works on a 3D spatial tree data structure. There are 3 steps

of computation and work/data flow down the tree in the projection

and reconstruction steps and flows up the tree for the compression

step.

24

MRA – TTG (prior to streaming terminals)

25

MRA – TTG (with streaming terminals)

18

Optimizing data motion
● PaRSEC internally tracks contiguous blocks of memory

holding data

– a.k.a. data copies or DCs

Data allocated within a DC can be intelligently tracked
through tasks

●

–

–

–

– Constness deduced from C++ API

Objects can be moved into send operations to eliminate
copying

Maintain copies of data in different memory regions

“Pure” tasks expose full data motion to the runtime

Differentiation (for simplicity here using central differences and Dirichlet boundary

conditions) is applied in the scaling function basis. To compute the derivative of the

function in the box corresponding to a leaf node, we require the coefficients from the

neighboring boxes at the same level.

• If the neighboring leaf nodes exist, compute.

• If it exists at a higher level,we can make the coefficients by recurring down from the

parent using the two-scale relation.

• If the neighbor exists at a finer scale, we must recur down until both neighbors are

at the same level.

Hence, phrased as parallel computation on all leaf nodes , differentiation must search

for neighbors in the tree at the same and higher levels, and may initiate computation

at lower levels. It can also be phrased as a recursive descent of the tree, which can

have advantages in reducing the amount of probes up the tree for parents of

neighbors (esp. in higher dimensions).

19

Central dif erence derivatives

• Logically we take an input function (tree) and

produce an output function

• 3-point stencil uses values on left, center, right

• Internally

• Send input nodes to corresponding L, C,

R nodes of output tree

• Recur down output

tree until all 3 (L, C, R)

are available then

compute result

20

Actual code for 1D Haar derivative

– plumbing

using nodeEdge = Edge<Key,Node>;

using doubleEdge =

Edge<Key,double>;

using nodeOut = Out<Key,Node>;

using doubleOut =

Out<Key,double>;

auto make_diff(nodeEdge& input, nodeEdge& result)

{

nodeEdge L, C, R;

return make_tuple(make_tt(&send_to_output_tree, edges(input),

edges(L,C,R)), make_tt(&diff, edges(L,C,R),

edges(L,C,R,result)))

}

21

void send_to_output_tree(const Key& key, const Node& node, tuple<nodeOut,nodeOut,nodeOut>& out)

{

send<0>(key.right(), node, out);

send<1>(key, node, out);

send<2>(key.left(), node, out);

}

void diff(const Key& key, const Node& left, const Node& center, const Node& right,

tuple<nodeOut,nodeOut,nodeOut,nodeOut>& out)

{

auto& [L,C,R,result] = out;

if (!(left.has_children || center.has_children || right.has_children)) {

double derivative = (right.s - left.s)/(4.0*::L*pow2(-key.n));

result.send(key,Node(key,derivative,0.0,false));

}

else {

result.send(key,Node(key,0.0,0.0,true));

if (!left.has_children) L.send(key.left_child(), left);

if (!center.has_children) {

auto children = {key.left_child(),key.right_child()};

L.send(key.right_child(),center);

C.broadcast(children,center);

R.send(key.left_child(), center);

}

if (!right.has_children) R.send(key.right_child(),right);

}

}

Aim to have this auto

generated from a

high-level spec

Actual code for 1D Haar derivative

– computation & data flow

22

23

TTG Status
● Prototype running on PaRSEC and MADNESS runtimes

Currently●

–

– Completing design by identifying use cases and developing mini-apps

Tuning performance of irregularly-tiled, block-sparse tensor operations on
multi-GPU nodes (e.g., Summit)

● Next steps

–

–

–

– Complete first full implementation of specification along with an intermediate
API to facilitate use of multiple runtimes

Demonstrate performance on components of full applications

Support additional runtimes including UCX, native C++, cloud stacks

Provide allocators over PaRSEC Dcs with optimized local and distributed
data structures

● Seeking collaborators

– New applications, new use cases, new runtime targets, developers, tool
integration

25

Related Funding

NSF OAC-1931387: Production quality Ecosystem for

Programming and Executing eXtreme-scale Applications (EPEXA)

NSF OAC-1927880: Ookami: A high-productivity path to frontiers

of scientific discovery enabled by exascale system technologies

NSF ACI-1450300: Task-Based Environment for Scientific

Simulation at Extreme Scale (TESSE)

NSF ACI-1141509: Dependence Programming and Optimization of

Scalable Irregular Numerical Applications

NSF (under subcontract from VT): Molecular Sciences Software

Institute

DOE Exascale Computing Project: NWChemEx

