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An extensible, robust and scalable directed acyclic graph (DAG) execution model 
supported by an intelligent and dynamic runtime that can adapt to changing 
requirements presented by the evolving numerical theories and HPC platforms.

• TTG (template task graph) is the main initial C++ API.
• Multiple runtimes supported

• Plans for multiple interoperable DSLs and algorithms on distributed data stru3ctures

Task-based environment for scientific 
simulation at extreme scale (TESSE)
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● Extends Parallel Scheduling and Execution 

Controller (PaRSEC) to larger classes of 

dynamic (data-dependent) computation; data 

distribution; compostion and execution of 

multiple DAGs

Addresses●

● heterogeneous hardware by runtime 

selection between multiple 

implementations

heterogeneous data distribution by 

separate specification of data and

algorithm, and runtime management of 

data motion

heterogeneous task duration through 

lightweight scheduling policies

●

●

● Automatic latency hiding enabled by 

knowledge of the dataflow of the program to 

enable all communications to occur in the 

background of the execution itself

PaRSEC: http://icl.cs.utk.edu/parsec/

TESSE extends PaRSEC to irregular apps

http://icl.cs.utk.edu/parsec/


TESSE C++ API and dataflow model

• Driven by

• MADNESS: Algorithms on unbalanced, deep 

spatial trees in 1-6 dimensions

• TiledArray: Block-sparse and low-rank algorithms 

for tensors with 2-6 or more dimensions

• Sparse linear algebra: element/block/rank sparsity

• Dense linear algebra: original use of PaRSEC

• Related projects – CnC, Legion, Charm++, …

5



MADNESS
• A general purpose numerical 

environment for reliable and fast 
scientific simulation

– Chemistry, nuclear physics, atomic physics, material 
science, nanoscience, climate, fusion, ...

• Want robust and fast algorithms that scale 
correctly with system size and are easy to write

• Semantic gap

– Why are equations O(100) lines but 
codes O(1M) ?

• Facile path from laptop to exaflop
https://github.com/m-a-d-n-e-s-s/madness

Applications

Numerics

Parallel Ru6ntime



7

Compose directly in terms of 
functions and operators

This is a Latex rendering of a 
program to solve the Hartree-Fock 
equations for the helium atom

The compiler also outputs a C++ 
code that can be compiled without 
modification and run in parallel

Highest-level  
DSL
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Example adaptive tree in Haar basis

• Haar basis is a piecewise constant (like a histogram)

• Not useful for calculation but easy to visualize and of fundamental interest

• Adaptive local refinement until local error measure is satisfied

• Smaller boxes where rate of change is high and value not negligible

• Conventional adaptive mesh corresponds to boxes

• Construct tree connecting fine-scale to coarser-scale boxes

• Boxes labeled with level (n=0,1,...) and translation (l=0,1,...,2n-1)

• Tree-based algorithms for fast computation (in math sense)
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A Key Component

• Trade precision for speed – everywhere

• Don’t do anything exactly

• Perform everything to O(ε)

• Require

• Robustness

• Speed, and

• Guaranteed, arbitrary, finite precision

• Leads to very irregular and dynamic data 

structures and computation on unbalanced trees

• Trees in 3D routinely go down 30+ levels
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• Generic massively parallel framework for dense and sparse 

tensor algebra

State of the art application to electronic structure of 

chemistry and materials in Massively Parallel Quantum 

Chemistry (MPQC) package

•

• Prototyping platform for DOE Exascale 

Chemistry App

Experimental use by research codes, e.g.

ChronusQuantum (Xiaosong Li/UW)

•

• Reduces communication and load imbalance of sparse 

tensor algebra using data-driven MADNESS runtime

Development supported in part by the NSF SSI program 

(OCI-1047696)

•

TiledArray: http://github.com/ValeevGroup/tiledarray/

TILEDARRAY
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TESSE will allow:
•

•

•

•

Vastly improved functionality by making it easier to compose complex algorithms 

Improved portability (e.g. accelerators)

Improved resource management 

Leverage CS community expertise

http://github.com/ValeevGroup/tiledarray/


TILEDARRAY: HIGH-LEVEL DSL
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expression trees are parsed at compile time,

transformed (op conversion and fusion) and evaluated lazily at runtime



• Structure

• including slicing (.block())

• Arithmetic
•

•

•

+, -, * (Hadamard), scale

Contract (tensor analog of GEMM) 

Permutation (tensor analog of transposition)

• Algebra
•

•

•

Conjugate gradient

Direct Inversion of Iterative Subspace (DIIS) 

In progress: decompositions (CP, Tucker)

TILEDARRAY: FEATURES
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Key concepts of TESSE dataflow model

• Template task graph (TTG)

• Parameterize each task that will execute the 
operation by a TaskId, e.g.,

• a loop index (i) making a separate task for each iteration

• the label of each node in a tree being traversed

• a pair of indices labelling a matrix sub-block

• Avoids describing the entire task DAG which is huge

• The user provides a map from TaskId to where the task will execute

• All data also labeled with TaskId to match with consuming task

• All inputs (arguments) of a task have the same TaskId

• Outputs may have different TaskId to send to different successors

• Through each output terminal a task can

• send data to a specific successor (one key), or

• broadcast to multiple successors (many keys), or

• reduce to an accumulator

13



14

TTG Examples
● Data-parallel loop on vectors 

for i : range {

T tmp = f(a[i],b[i]);
d[i] = g(a[i],tmp);

}

● Iterative algorithm 

iter = 0;

while (tmp<10 && iter<100) { 
iter++; x = f(x);

}



Reading the TTG

• Input terminals at top of operation

• Name of operation in middle

• Output terminals at bottom of operation

• Connect output terminals to input 

terminals of successor tasks

• Computation/data flows from 

top to bottom

• Pull terminal modifies this

• Recursion represented by 

backward edges and cycles

• The TTG is not a DAG

• The executed task graph is a DAG

15

Naïve SUMMA 
MxM in TTG
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TemplateTasks and Tasks
● ATemplateTask describes a set of tasks parameterized by a TaskId

The Terminals of a TemplateTask are placeholders for the 

inputs/outputs of a task

void f(TaskId, Arg0, Arg1, ..., OutputTerminals)

●
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TemplateTasks and Tasks
● ATemplateTask describes a set of tasks parameterized by a TaskId

The Terminals of a TemplateTask are placeholders for the 

inputs/outputs of a task

void f(TaskId, Arg0, Arg1, ..., OutputTerminals)

The most general task can contain multiple send/broadcast operations 
that conditionally propagate results to successors

– In general, this requires copying data and a split task implementation for GPUs

●

●
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TemplateTasks and Tasks
● ATemplateTask describes a set of tasks parameterized by a TaskId

The Terminals of a TemplateTask are placeholders for the 

inputs/outputs of a task

void f(TaskId, Arg0, Arg1, ..., OutputTerminals)

The most general task can contain multiple send/broadcast operations 
that conditionally propagate results to successors

– In general, this requires copying data and a split task implementation for GPUs

A “pure” task sends only at most once to each output terminal and defers 
this motion to the runtime by returning results with predicates

std::tuple<R0,R1> f(TaskId, Arg0, Arg1, ...)

where R0=std::pair<bool,Result0>, Result0 is the actual type of 

result 0, and the bool determines if the data is to be sent

●

●

●

– Exposes all info to the runtime, avoids copying data, and simplifies use of GPUs

– Closest to PaRSEC PTG --- adds runtime computed predicates, general types
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Terminals
● Correspond to inputs/outputs of a task

Compose the TTG by connecting inputs and outputs

– Either via providing an Edge to the constructor or by manually connecting

●
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Terminals
● Correspond to inputs/outputs of a task

Compose the TTG by connecting inputs and outputs

– Either via providing an Edge to the constructor or by manually connecting

By default data are pushed to a successor and terminals act as 
single assignment variables

●

●

● The first input argument to arrive causes the task to be instantiated 

Once all arguments have arrived, the task is marked ready●
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Terminals
● Correspond to inputs/outputs of a task

Compose the TTG by connecting inputs and outputs

– Either via providing an Edge to the constructor or by manually connecting

By default data are pushed to a successor and terminals act as 
single assignment variables

●

●

● The first input argument to arrive causes the task to be instantiated 

Once all arguments have arrived, the task is marked ready●

● Terminals can be marked as pull
● A logically preceding task is instantiated to send the data

– E.g., reading from memory, generating data on the fly, recursive construction

Important optimizations

– Directly call the operation to avoid task overhead

– Greedy (at task creation) or lazy (when all other inputs available) pulling of data to control 
resource utilization

●
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Terminals
● Correspond to inputs/outputs of a task

Compose the TTG by connecting inputs and outputs

– Either via providing an Edge to the constructor or by manually connecting

By default data are pushed to a successor and terminals act as 
single assignment variables

●

●

● The first input argument to arrive causes the task to be instantiated 

Once all arguments have arrived, the task is marked ready●

● Terminals can be marked as pull
● A logically preceding task is instantiated to send the data

– E.g., reading from memory, generating data on the fly, recursive construction

Important optimizations

– Directly call the operation to avoid task overhead

– Greedy (at task creation) or lazy (when all other inputs available) pulling of data to control 
resource utilization

●

● Terminals are programmable

– E.g., general reduction operations, computation on streaming data
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Examples of send and broadcast
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Streaming Terminal Example
● MRA works on a 3D spatial tree data structure. There are 3 steps 

of computation and work/data flow down the tree in the projection 

and reconstruction steps and flows up the tree for the compression 

step. 
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MRA – TTG (prior to streaming terminals)
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MRA – TTG (with streaming terminals)
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Optimizing data motion
● PaRSEC internally tracks contiguous blocks of memory 

holding data

– a.k.a. data copies or DCs

Data allocated within a DC can be intelligently tracked 
through tasks

●

–

–

–

– Constness deduced from C++ API

Objects can be moved into send operations to eliminate 
copying

Maintain copies of data in different memory regions 

“Pure” tasks expose full data motion to the runtime



Differentiation (for simplicity here using central differences and Dirichlet boundary 

conditions) is applied in the scaling function basis. To compute the derivative of the 

function in the box corresponding to a leaf node, we require the coefficients from the 

neighboring boxes at the same level.

• If the neighboring leaf nodes exist, compute.

• If it exists at a higher level,we can make the coefficients by recurring down from the 

parent using the two-scale relation.

• If the neighbor exists at a finer scale, we must recur down until both neighbors are 

at the same level.

Hence, phrased as parallel computation on all leaf nodes , differentiation must search 

for neighbors in the tree at the same and higher levels, and may initiate computation 

at lower levels. It can also be phrased as a recursive descent of the tree, which can 

have advantages in reducing the amount of probes up the tree for parents of 

neighbors (esp. in higher dimensions).

19



Central dif erence derivatives

• Logically we take an input function (tree) and 

produce an output function

• 3-point stencil uses values on left, center, right

• Internally

• Send input nodes to corresponding L, C,

R nodes of output tree

• Recur down output

tree until all 3 (L, C, R) 

are available then 

compute result

20



Actual code for 1D Haar derivative

– plumbing

using nodeEdge = Edge<Key,Node>;  

using doubleEdge =

Edge<Key,double>;

using nodeOut = Out<Key,Node>;  

using doubleOut =

Out<Key,double>;

auto make_diff(nodeEdge& input, nodeEdge& result)

{

nodeEdge L, C, R;

return make_tuple(make_tt(&send_to_output_tree, edges(input),

edges(L,C,R)), make_tt(&diff, edges(L,C,R),

edges(L,C,R,result)))

}
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void send_to_output_tree(const Key& key, const Node& node, tuple<nodeOut,nodeOut,nodeOut>& out)

{

send<0>(key.right(), node, out);  

send<1>(key, node, out);  

send<2>(key.left(), node, out);

}

void diff(const Key& key, const Node& left, const Node& center, const Node& right, 

tuple<nodeOut,nodeOut,nodeOut,nodeOut>& out)

{

auto& [L,C,R,result] = out;

if (!(left.has_children || center.has_children || right.has_children)) {

double derivative = (right.s - left.s)/(4.0*::L*pow2(-key.n)); 

result.send(key,Node(key,derivative,0.0,false));

}

else {

result.send(key,Node(key,0.0,0.0,true));

if (!left.has_children) L.send(key.left_child(), left); 

if (!center.has_children) {

auto children = {key.left_child(),key.right_child()};

L.send(key.right_child(),center); 

C.broadcast(children,center); 

R.send(key.left_child(), center);

}

if (!right.has_children) R.send(key.right_child(),right);

}

}

Aim to have this auto 

generated from a 

high-level spec

Actual code for 1D Haar derivative

– computation & data flow

22
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TTG Status
● Prototype running on PaRSEC and MADNESS runtimes 

Currently●

–

– Completing design by identifying use cases and developing mini-apps

Tuning performance of irregularly-tiled, block-sparse tensor operations on 
multi-GPU nodes (e.g., Summit)

● Next steps

–

–

–

– Complete first full implementation of specification along with an intermediate 
API to facilitate use of multiple runtimes

Demonstrate performance on components of full applications 

Support additional runtimes including UCX, native C++, cloud stacks

Provide allocators over PaRSEC Dcs with optimized local and distributed 
data structures

● Seeking collaborators

– New applications, new use cases, new runtime targets, developers, tool 
integration
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Related Funding

NSF OAC-1931387: Production quality Ecosystem for 

Programming and Executing eXtreme-scale Applications (EPEXA)

NSF OAC-1927880: Ookami: A high-productivity path to frontiers 

of scientific discovery enabled by exascale system technologies

NSF ACI-1450300: Task-Based Environment for Scientific 

Simulation at Extreme Scale (TESSE)

NSF ACI-1141509: Dependence Programming and Optimization of 

Scalable Irregular Numerical Applications

NSF (under subcontract from VT): Molecular Sciences Software 

Institute

DOE Exascale Computing Project: NWChemEx


