
“Where should I start for Parallelization?”

- A Graph Neural Network Based Parallelism Detection Approach

Le Chen, Ali Jannesari
Iowa State University

Department of Computer Science

CnC’21

Department of Computer Science 2

Parallelizing sequential programs is not so easy.

Introduction

#pragma omp parallel for firstprivate(numNode)
for (Index_t i = 0; i < numNode; ++i) {

domain.xdd(i) = domain.fx(i) / domain.nodalMass(i);
domain.ydd(i) = domain.fy(i) / domain.nodalMass(i);
domain.zdd(i) = domain.fz(i) / domain.nodalMass(i);

}
}

1. discover potential parallelism in sequential applications

2. apply parallelism

Department of Computer Science 3

Motivation

Auto parallelization is complicated

● Abandon fully automatic parallelization with compilers
● Instead, we start by pointing programmers to likely

parallelization opportunities

Current assisted parallelization tools:
● DiscoPoP: www.discopop.org , https://github.com/discopop-

project/discopop
● AutopaR
● etc

Department of Computer Science 4

Motivation

However:

● requires manual tuning of the tools;

● current approach cannot support some common

parallelization patterns like stencil

Proposed solution:

● using machine learning techniques for parallelism discovery

Department of Computer Science 5

Background - Static vs. Dynamic data dependence
analysis

1 for(i=0;i<n;i++){
2 w = a[f(i)];
3 a[g(i)]=v;
4 }

SA P DA

Data dependences that

static analysis cannot

rule out
Data dependences that occur in

practice with all possible inputs

Data

dependences with

a limited set of

inputs

Department of Computer Science 6

Background - DiscoPoP
S

eq
ue

nt
ia

l P
ro

g
ra

m

Abstraction &
Decomposition

C
om

p
ut

at
io

na
l

U
ni

t (
C

U
)

an
al

ys
is

P
ar

al
le

liz
a

tio
n

su
g

ge
st

io
n

s

Dependence
Analysis

D
yn

a
m

ic
 d

a
ta

-
d

ep
en

de
nc

e

a
na

ly
si

s CU
Graph

Pattern
Identification

P
ar

al
le

l p
a

tt
e

rn

id
en

tif
ic

at
io

n

Pattern
Implementation

C
od

e
tr

an
sf

or
m

at
io

n

https://github.com/discopop-project/discopop

Department of Computer Science 7

Background - DiscoPoP

Computational Unit (CU):

void netlist:: (netlist_elem** a, netlist_elem** b, Rng* rng)
{

//get a random element
long id_a = rng->rand(_chip_size);
netlist_elem* elem_a = &(_elements[id_a]);
//now do the same for b
long id_b = rng->rand(_chip_size);
netlist_elem* elem_b = &(_elements[id_b]);
while (id_b == id_a)
{

id_b = rng->rand(_chip_size);
elem_b = &(_elements[id_b]);

}
*a = elem_a;
*b = elem_b;
return;

}
Function netlist::get random pair of parsec.canneal that contains two CUs.

Department of Computer Science 8

Background - Parallel design patterns

● Design pattern = good solution to recurring problem

● Many parallel design patterns have been introduced

○ DOALL, reduction, task parallelism, pipeline,
geometric decomposition and many more

● Help avoid concurrency bugs such as deadlocks and

data races

● Simplify parallelization process of a sequential code

Department of Computer Science 9

Background - Graph Convolutional Networks (GCNs)

Graph Convolutional Networks (GCNs):
● Main idea: For each layer, information is passed between

each other through links, and aggregated by each node.
● Fuse node features with the help of network structures.
● Applications: machine learning tasks in networks

Department of Computer Science 10

Background - Graph Convolutional Networks (GCNs)

Why GCNs?
● ML techniques like NLP methods cannot be directly applied
● Codes can be naturally represented by graphs/trees

Department of Computer Science 11

Background - Parallelism Discovery with Machine
Learning

with traditional machine learning techniques:
● Fried’s work [1]
● uses DiscoPoP to extract dynamic features
● applies different ML techniques to classify target loops:

○ SVM
○ Decision Tree
○ AdaBoost DT

with GNNs:
Shen’s work [2]
● uses contextual flow graphs to represent the code
● applies a deep graph convolution neural network for graph

classification

1. Fried, Daniel, et al. "Predicting parallelization of sequential programs using supervised learning." 2013 12th International Conference on Machine
Learning and Applications. Vol. 2. IEEE, 2013.

2. Shen, Yuanyuan, et al. "Towards parallelism detection of sequential programs with graph neural network." Future Generation Computer Systems 125
(2021): 515-525.

Department of Computer Science 12

Challenges

● code representation
● code embedding
● feature selection
● insufficient data

Department of Computer Science 13

Approach

Department of Computer Science 14

Approach - Code Representation

PEG: program execution graphs based on the CU graph
generated by DiscoPoP

Department of Computer Science 15

Approach - Feature Selection and Embedding

Dynamic features:

Feature name Description

N Inst Number of instructions within the loop

exec times Total number of times the loop is executed

CFL Critical path length

ESP Estimated speedup

incoming dep Dependency count of external instructions on loop instructions

internal dep Dependency count between loop instructions

outgoing dep Dependency count of loop instructions on external instructions

Department of Computer Science 16

Approach - Feature Selection and Embedding

Static features:
representation of code semantics with Ben-Nun’s work

Structural features:
embedding with anonymous walks:

Department of Computer Science 17

Approach - A Multi-view GNN Approach

Department of Computer Science 18

Approach - Dataset

Benchmarks:
NAS
BOTs
PolyBench
Synthetic dataset

Department of Computer Science 19

Evaluation

Benchmark Model Acc (%)

NPB Multi-view 86.4

CNN+LSTM 76.1

PolyBench Multi-view 82.1

CNN+LSTM 74.5

BOTS Multi-view 81.9

CNN+LSTM 71.4

Department of Computer Science 20

Conclusion

● We propose a GNN based framework towards the discovery
of parallelism in sequential programs

● It achieves comparable results comparing with traditional
methods

● Our framework can be used as a foundation for downstream
tasks like pattern recognition.

● Our work is limited by insufficient data. In future work, we
plan to solve this problem by
○ creating synthetic dataset, and
○ applying ML techniques that works with limited training

data.

Department of Computer Science 21

Future work

● synthetic dataset generation
● structural information embedding for code
● better dynamic representation and embedding for code
● apply our model with CnC graph
● open for collaboration :)

Department of Computer Science 22

Q & A

Thank you!

Department of Computer Science 23

Motivation

Traditional methods for parallelism discovery:

● static analysis: is unable to detect any run-time features and

is proved overly conservative for identifying parallelism in

general-purpose programs

● dynamic analysis: Optimistic approach based on actual

(dynamic) dependences has shown to allow reproduction of

manual parallelization strategies

However:

● requires manual tuning of the tools;

● current approach cannot support some common

parallelization patterns like stencil

