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CONTEXT
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Addressing HPC/Exascale Challenges

• Challenges in Petascale, Exascale, and beyond – with increasing 
complexity

• Performance 
– Parallelism, locality, load balancing, algorithmic scalability
– Latency of local & remote memory accesses

• Productivity
– DSLs, with their flexibility vs performance tradeoff
– Parallel debugging

• Hitting some hardware boundaries
– Process scaling continues
– But energy envelope is bounding HW capabilities
– Node failures
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Addressing HPC/Exascale Challenges

• Working around power constraints
• Lower voltage as much as possible

– Near Threshold Voltage
• Performance variability across PEs increases
• Heterogeneity, even in a homogeneous array of PEs

• Increase parallelism as much as possible, lower frequency
– Use of hierarchies to get to scale 

• Affects latencies

– Fork-Join, Loop parallelism often not enough to produce that 
much concurrency

• Fine-grained power controls for SW optimization
– Need to optimize program for use of HW knobs (Power API)

• Explicitly managed memories and communications
– Need to generate complex data decomposition and movement



Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop 5

Addressing HPC/Exascale Challenges

• Direct impact on software requirements
• Parallel programming model must enable

– Fine-grain load balancing
– Non-loop (task) parallelism
– Hiding long memory latencies (even in loop codes)

• Productivity is key (in addition to performance and other factors)
– Programming models allowing to express separation of concerns
– Tools enabling a productive ecosystem 

• One of the widely adopted concept: Task-based runtimes
– Declare tasks and their dependences
– Tasks are scheduled asynchronously

• Work-stealing variants
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• Our first target to task-based runtime concepts
• Collaboration with the CnC team to target advanced concepts via 

R-Stream
– Regular sessions with Kath Knobe and her team 

• Continued the collaboration with the community
• DOE X-Stack and FF2 programs
• Brainstorming concepts and developing tools with

– OCR team (Rice and Intel)
– ETI SWARM
– Various teams in the community working on runtimes
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Embracing the Trend with HPC Community 
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• Developed techniques to extend R-Stream to map to Exascale
• Developed new techniques to generate code for multiple 

asynchronous task-based runtime models (CnC, OCR, SWARM, …)
– Ability to target deep memory and processor hierarchies

• Techniques generic to be applied broadly and extended across 
different models and targets
– Legion/Realm
– PaRSEC
– Task-based runtime for GPUs
– OpenMP tasks

• Developed new optimizations for energy efficiency
– Power controls (DVFS) through a runtime Power API 
– Hierarchical energy-proportional scheduling and many more …
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R-Stream Extensions for Addressing Exascale 
Challenges 
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• Augment R-Stream to express task-based parallelism and data 
management for a generic runtime
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R-Stream Extensions
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• Augment R-Stream to express task-based parallelism and data 
management for a generic runtime

• Design a generic task-based runtime layer corresponding to the 
polyhedral output
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R-Stream Extensions
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R-STREAM + OCR
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• Event-driven task (EDT) runtime
• Tasks (EDTs), Data Blocks (DBs), events, policy domains (nodes)

• Control dependences

• Data dependences

• Runtime support
• EDTs start when their dependences are satisfied
• EDTs acquire all the DBs they need before starting
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OCR Paradigms
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• R-Stream techniques concretely offer
• Automatic code generation and optimization

– Parallelism, Data locality

• Explicit management of hierarchical communications 
• Scalable asynchronous EDT execution

– Tasks, dependences, and data blocks are created on-the-fly

• Positive interference with runtime through hints and affinity
• Improved capability for testing and developing runtime 

features

• Demonstrated through generation of optimized code
• HPCG, HPGMG, CoSP2
• SW4
• Stencils (2D, 3D, 4D), linear algebra kernels, … 

12

R-Stream Optimizations for OCR –The Big Picture
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• Decomposition of computations and data through tiling
• Automatic computation partitioning to form tasks
• Automatic data partitioning to form datablocks
• Transformations including tiling ensure

– Extraction of enough parallelism and good data locality

• Control and data dependences
• Task graph – tasks and their dependences
• Dependences between DBs and EDTs

– Enumeration: EDT x depends on DB y
– Fetching: DB coordinates to data pointer
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Automatic Generation of Runtime Paradigms
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• Choose a DB layout according to read/write pattern
• greatly reduce the number of DBs an EDT depends on

• Characterize DB accesses 
• reuse factor of DBs
• communication volume and pattern of DBs 
• Dominant DBs
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Optimization on Data Decomposition 

Presenter
Presentation Notes
A DB dependence is costly
Overhead for the OCR runtime
Additional scheduling constraints if the DB is written

R-Stream aligns the DB layout according to writes
Stencils: aligning with ghost region

Layout optimization can greatly reduce the number of DBs an EDT depends on
Significant performance improvement for writes
The DB size also matters
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• Several data distribution strategies
• Blocked
• Block-cyclic
• Round-robin
• No affinity: OCR automatically handles data placement

• Use OCR hint (affinity) to place DBs on nodes

• Implicit load balancing
• EDT-DB affinities: EDTs are co-located with one DB

• Explicit data placement has a significant impact on 
performance
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Data Placement
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• Positive interference with runtime
• Compiler-generated “hints” and “affinity” to the runtime

• Useful hints
• DB-EDT affinity
• DB-Policy Domain affinity
• EDT priority
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Automatic Generation of OCR Hints
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GENERIC RUNTIME SUPPORT
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Generic Runtime Layer 

Predecessor count function: parameterized by 
taskTypeId and taskId, returns number of 
predecessors.

Datablock enumeration function: parameterized by 
taskTypeId and taskId, fills child context with 
requested dbTypeId and coords.

Autodec: accepts as input the (1) child taskTypeId and 
taskId, (2) the predecessor count function, and (3) the 
datablock enumeration function.

Datablock fetch: takes dbTypeId, coords, and size; 
returns a region of memory for read / write.

•High level API
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● Registered with the runtime
● Represented as a tiled array
● Covers both shared and 

distributed memory with no 
extra overhead

● fetchDB returns a C-style 
array pointer for read / write

● Compiler will never generate 
two fetches which lead to a 
data race

● Implemented using target 
framework’s primitives

// 4x8 array of 5x5 tiles
// total dimensions: 20x40
declareDBType(0, /*dbId*/

5, 5, /*tileDims*/
4, 8, /*numTiles*/);

// returns tile (1, 3)
// which is [5:10, 15:20] in
// original array
fetchDB(0,   /*dbId*/

1, 3     /*tileId*/);

Generic Runtime Layer 

•Datablock API
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● Registered with the runtime
● Tasks represent automatically 

tiled units of work from 
original program

● autodec is implemented using 
target framework’s primitives

Generic Runtime Layer 

•Task API

// original code
for (i = 0; i < 100; i++)
A[i] *= 2;

// tiled tasks using generic API
declareTaskType(0,     /*taskTypeId*/

task0  /*fn*/);

for (i = 0; i < 5; i++)
autodec(0,  /*taskTypeId*/

i   /*taskId*/, 
...);

task0 (taskId, ...):
for (i = 0; i < 20; i++)

A[taskId * i] *= 2;
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● Dynamic creation of task DAG
● All predecessors try to spawn 

the task, but only one 
succeeds

● Dynamic enumeration of the 
required datablocks for the 
spawned task

● wait, spawn, (+ other context 
set up) implemented using 
target runtime primitives

autodec(..., predCntFn, dbEnumFn):
taskCtx.count++;
if (taskCtx.count = predCntFn(...)) {

dbEnumFn(taskCtx, ...);
wait(taskCtx.dbs);
spawn(taskCtx);

}

predCntFn(taskTypeId, taskId, ...):
// returns number of predecessors
// for the given task

dbEnumFn(childCtx, taskTypeId, taskId):
childCtx.addDB(...);
childCtx.addDB(...);

Generic Runtime Layer 

•Dependence API
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KEY CAPABILITIES
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Scaling Task Dependence Computations

Loops have inter-task (outer) and intra-task (inner) dimensions
State of the art 
- Produce a dependence polyhedron

- Tiled iteration spaces
- Project out intra-task dimensions

Computation of task dependence was too slow
- Tiled dependence polyhedron dimensionality can be high
- Projection is relatively expensive

Scaling task dependence computations using pre-tiling 
iteration spaces
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On-the-fly Task Creation

Single node: first predecessor that is done
- Decrement successor counter but create it if necessary

- “Autodec” operation
- Based on atomics

Multi-node: agreed upon predecessor
- All predecessors must know it statically to avoid syncs
- E.g., lexicographic min of the predecessors

- But PILP is costly, can produce ugly code
- Lexico min can be computed at runtime

- Early-exited loop
- Cheap, readable
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• Dynamic creation of tasks and data blocks
• Scalable & Flexible

– Tasks, data blocks, and dependences created on-the-fly as needed
• “autodecs” (counted dependences and decrement with automatic 

creation)

– Minimum runtime overhead (space, in-flight work, garbage 
collection)
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Self-unfolding Tasks and Data

R-Stream does not create the 
entire task graph and data blocks 
at the beginning
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• Dynamic creation of tasks and data blocks
• Scalable & Flexible

– Tasks, data blocks, and dependences created on-the-fly as needed
• “autodecs” (counted dependences and decrement with automatic 

creation)

– Minimum runtime overhead (space, in-flight work, garbage 
collection)

29

Self-unfolding Tasks and Data

First create only tasks that do not 
have predecessors and create only 
necessary data blocks
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• Dynamic creation of tasks and data blocks
• Scalable & Flexible

– Tasks, data blocks, and dependences created on-the-fly as needed
• “autodecs” (counted dependences and decrement with automatic 

creation)

– Minimum runtime overhead (space, in-flight work, garbage 
collection)
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Self-unfolding Tasks and Data

“Autodec” code that 
dynamically enumerates its 
successors and adjusts the 
dependence count
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• Dynamic creation of tasks and data blocks
• Scalable & Flexible

– Tasks, data blocks, and dependences created on-the-fly as needed
• “autodecs” (counted dependences and decrement with automatic 

creation)

– Minimum runtime overhead (space, in-flight work, garbage 
collection)
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Self-unfolding Tasks and Data

Some tasks could be freed by 
the runtime keeping the 
active space compact

Data blocks are explicitly 
freed as their active use is 
complete (does not wait until 
the end of the program)
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• Dynamic creation of tasks and data blocks
• Scalable & Flexible

– Tasks, data blocks, and dependences created on-the-fly as needed
• “autodecs” (counted dependences and decrement with automatic 

creation)

– Minimum runtime overhead (space, in-flight work, garbage 
collection)
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Self-unfolding Tasks and Data

In-flight work is kept to 
minimum (tasks freed as they 
are done)
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• Automatic parallelization and optimization tools 
• Great productivity and performance enablers
• Need to evolve with the changing trend of architectures, 

programming models and runtimes
• Many challenges are addressed and a lot of interesting challenges 

need to be addressed

• Gathering and brainstorming forums with the community is key

• Would like to thank the organizers and the steering committee of 
this workshop!
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Conclusions
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