
Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

Muthu Baskaran

1

Automatic Optimization and Code Generation
for Asynchronous Task-Based Runtimes

CnC 2021: The Thirteenth Annual Concurrent Collections Workshop
October 27–28, 2021 at SUNY Global Center

Reservoir Labs

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

CONTEXT

2

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop 3

Addressing HPC/Exascale Challenges

• Challenges in Petascale, Exascale, and beyond – with increasing
complexity

• Performance
– Parallelism, locality, load balancing, algorithmic scalability
– Latency of local & remote memory accesses

• Productivity
– DSLs, with their flexibility vs performance tradeoff
– Parallel debugging

• Hitting some hardware boundaries
– Process scaling continues
– But energy envelope is bounding HW capabilities
– Node failures

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop 4

Addressing HPC/Exascale Challenges

• Working around power constraints
• Lower voltage as much as possible

– Near Threshold Voltage
• Performance variability across PEs increases
• Heterogeneity, even in a homogeneous array of PEs

• Increase parallelism as much as possible, lower frequency
– Use of hierarchies to get to scale

• Affects latencies

– Fork-Join, Loop parallelism often not enough to produce that
much concurrency

• Fine-grained power controls for SW optimization
– Need to optimize program for use of HW knobs (Power API)

• Explicitly managed memories and communications
– Need to generate complex data decomposition and movement

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop 5

Addressing HPC/Exascale Challenges

• Direct impact on software requirements
• Parallel programming model must enable

– Fine-grain load balancing
– Non-loop (task) parallelism
– Hiding long memory latencies (even in loop codes)

• Productivity is key (in addition to performance and other factors)
– Programming models allowing to express separation of concerns
– Tools enabling a productive ecosystem

• One of the widely adopted concept: Task-based runtimes
– Declare tasks and their dependences
– Tasks are scheduled asynchronously

• Work-stealing variants

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

• Our first target to task-based runtime concepts
• Collaboration with the CnC team to target advanced concepts via

R-Stream
– Regular sessions with Kath Knobe and her team

• Continued the collaboration with the community
• DOE X-Stack and FF2 programs
• Brainstorming concepts and developing tools with

– OCR team (Rice and Intel)
– ETI SWARM
– Various teams in the community working on runtimes

6

Embracing the Trend with HPC Community

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

• Developed techniques to extend R-Stream to map to Exascale
• Developed new techniques to generate code for multiple

asynchronous task-based runtime models (CnC, OCR, SWARM, …)
– Ability to target deep memory and processor hierarchies

• Techniques generic to be applied broadly and extended across
different models and targets
– Legion/Realm
– PaRSEC
– Task-based runtime for GPUs
– OpenMP tasks

• Developed new optimizations for energy efficiency
– Power controls (DVFS) through a runtime Power API
– Hierarchical energy-proportional scheduling and many more …

7

R-Stream Extensions for Addressing Exascale
Challenges

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

• Augment R-Stream to express task-based parallelism and data
management for a generic runtime

8

R-Stream Extensions

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

• Augment R-Stream to express task-based parallelism and data
management for a generic runtime

• Design a generic task-based runtime layer corresponding to the
polyhedral output

9

R-Stream Extensions

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

R-STREAM + OCR

10

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

• Event-driven task (EDT) runtime
• Tasks (EDTs), Data Blocks (DBs), events, policy domains (nodes)

• Control dependences

• Data dependences

• Runtime support
• EDTs start when their dependences are satisfied
• EDTs acquire all the DBs they need before starting

11

OCR Paradigms

DB
EDT EDT

DB

DB

DB
EDT EDTDB

EDT
EDT

EDT

EDTEvent

EDT

EDT

Event

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

• R-Stream techniques concretely offer
• Automatic code generation and optimization

– Parallelism, Data locality

• Explicit management of hierarchical communications
• Scalable asynchronous EDT execution

– Tasks, dependences, and data blocks are created on-the-fly

• Positive interference with runtime through hints and affinity
• Improved capability for testing and developing runtime

features

• Demonstrated through generation of optimized code
• HPCG, HPGMG, CoSP2
• SW4
• Stencils (2D, 3D, 4D), linear algebra kernels, …

12

R-Stream Optimizations for OCR –The Big Picture

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

• Decomposition of computations and data through tiling
• Automatic computation partitioning to form tasks
• Automatic data partitioning to form datablocks
• Transformations including tiling ensure

– Extraction of enough parallelism and good data locality

• Control and data dependences
• Task graph – tasks and their dependences
• Dependences between DBs and EDTs

– Enumeration: EDT x depends on DB y
– Fetching: DB coordinates to data pointer

13

Automatic Generation of Runtime Paradigms

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

• Choose a DB layout according to read/write pattern
• greatly reduce the number of DBs an EDT depends on

• Characterize DB accesses
• reuse factor of DBs
• communication volume and pattern of DBs
• Dominant DBs

14

Optimization on Data Decomposition

Presenter
Presentation Notes
A DB dependence is costly
Overhead for the OCR runtime
Additional scheduling constraints if the DB is written

R-Stream aligns the DB layout according to writes
Stencils: aligning with ghost region

Layout optimization can greatly reduce the number of DBs an EDT depends on
Significant performance improvement for writes
The DB size also matters

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

• Several data distribution strategies
• Blocked
• Block-cyclic
• Round-robin
• No affinity: OCR automatically handles data placement

• Use OCR hint (affinity) to place DBs on nodes

• Implicit load balancing
• EDT-DB affinities: EDTs are co-located with one DB

• Explicit data placement has a significant impact on
performance

15

Data Placement

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

• Positive interference with runtime
• Compiler-generated “hints” and “affinity” to the runtime

• Useful hints
• DB-EDT affinity
• DB-Policy Domain affinity
• EDT priority

16

Automatic Generation of OCR Hints

EDT

DB

DB

DB

DB

DB

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

GENERIC RUNTIME SUPPORT

17

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop 18

Generic Runtime Layer

Predecessor count function: parameterized by
taskTypeId and taskId, returns number of
predecessors.

Datablock enumeration function: parameterized by
taskTypeId and taskId, fills child context with
requested dbTypeId and coords.

Autodec: accepts as input the (1) child taskTypeId and
taskId, (2) the predecessor count function, and (3) the
datablock enumeration function.

Datablock fetch: takes dbTypeId, coords, and size;
returns a region of memory for read / write.

•High level API

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

● Registered with the runtime
● Represented as a tiled array
● Covers both shared and

distributed memory with no
extra overhead

● fetchDB returns a C-style
array pointer for read / write

● Compiler will never generate
two fetches which lead to a
data race

● Implemented using target
framework’s primitives

// 4x8 array of 5x5 tiles
// total dimensions: 20x40
declareDBType(0, /*dbId*/

5, 5, /*tileDims*/
4, 8, /*numTiles*/);

// returns tile (1, 3)
// which is [5:10, 15:20] in
// original array
fetchDB(0, /*dbId*/

1, 3 /*tileId*/);

Generic Runtime Layer

•Datablock API

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

● Registered with the runtime
● Tasks represent automatically

tiled units of work from
original program

● autodec is implemented using
target framework’s primitives

Generic Runtime Layer

•Task API

// original code
for (i = 0; i < 100; i++)
A[i] *= 2;

// tiled tasks using generic API
declareTaskType(0, /*taskTypeId*/

task0 /*fn*/);

for (i = 0; i < 5; i++)
autodec(0, /*taskTypeId*/

i /*taskId*/,
...);

task0 (taskId, ...):
for (i = 0; i < 20; i++)

A[taskId * i] *= 2;

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

● Dynamic creation of task DAG
● All predecessors try to spawn

the task, but only one
succeeds

● Dynamic enumeration of the
required datablocks for the
spawned task

● wait, spawn, (+ other context
set up) implemented using
target runtime primitives

autodec(..., predCntFn, dbEnumFn):
taskCtx.count++;
if (taskCtx.count = predCntFn(...)) {

dbEnumFn(taskCtx, ...);
wait(taskCtx.dbs);
spawn(taskCtx);

}

predCntFn(taskTypeId, taskId, ...):
// returns number of predecessors
// for the given task

dbEnumFn(childCtx, taskTypeId, taskId):
childCtx.addDB(...);
childCtx.addDB(...);

Generic Runtime Layer

•Dependence API

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

KEY CAPABILITIES

22

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

Scaling Task Dependence Computations

Loops have inter-task (outer) and intra-task (inner) dimensions
State of the art
- Produce a dependence polyhedron

- Tiled iteration spaces
- Project out intra-task dimensions

Computation of task dependence was too slow
- Tiled dependence polyhedron dimensionality can be high
- Projection is relatively expensive

Scaling task dependence computations using pre-tiling
iteration spaces

23

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

On-the-fly Task Creation

Single node: first predecessor that is done
- Decrement successor counter but create it if necessary

- “Autodec” operation
- Based on atomics

Multi-node: agreed upon predecessor
- All predecessors must know it statically to avoid syncs
- E.g., lexicographic min of the predecessors

- But PILP is costly, can produce ugly code
- Lexico min can be computed at runtime

- Early-exited loop
- Cheap, readable

25

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

• Dynamic creation of tasks and data blocks
• Scalable & Flexible

– Tasks, data blocks, and dependences created on-the-fly as needed
• “autodecs” (counted dependences and decrement with automatic

creation)

– Minimum runtime overhead (space, in-flight work, garbage
collection)

28

Self-unfolding Tasks and Data

R-Stream does not create the
entire task graph and data blocks
at the beginning

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

• Dynamic creation of tasks and data blocks
• Scalable & Flexible

– Tasks, data blocks, and dependences created on-the-fly as needed
• “autodecs” (counted dependences and decrement with automatic

creation)

– Minimum runtime overhead (space, in-flight work, garbage
collection)

29

Self-unfolding Tasks and Data

First create only tasks that do not
have predecessors and create only
necessary data blocks

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

• Dynamic creation of tasks and data blocks
• Scalable & Flexible

– Tasks, data blocks, and dependences created on-the-fly as needed
• “autodecs” (counted dependences and decrement with automatic

creation)

– Minimum runtime overhead (space, in-flight work, garbage
collection)

30

Self-unfolding Tasks and Data

“Autodec” code that
dynamically enumerates its
successors and adjusts the
dependence count

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

• Dynamic creation of tasks and data blocks
• Scalable & Flexible

– Tasks, data blocks, and dependences created on-the-fly as needed
• “autodecs” (counted dependences and decrement with automatic

creation)

– Minimum runtime overhead (space, in-flight work, garbage
collection)

31

Self-unfolding Tasks and Data

Some tasks could be freed by
the runtime keeping the
active space compact

Data blocks are explicitly
freed as their active use is
complete (does not wait until
the end of the program)

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

• Dynamic creation of tasks and data blocks
• Scalable & Flexible

– Tasks, data blocks, and dependences created on-the-fly as needed
• “autodecs” (counted dependences and decrement with automatic

creation)

– Minimum runtime overhead (space, in-flight work, garbage
collection)

32

Self-unfolding Tasks and Data

In-flight work is kept to
minimum (tasks freed as they
are done)

Reservoir Labs CnC 2021: The Thirteenth Annual Concurrent Collections Workshop

• Automatic parallelization and optimization tools
• Great productivity and performance enablers
• Need to evolve with the changing trend of architectures,

programming models and runtimes
• Many challenges are addressed and a lot of interesting challenges

need to be addressed

• Gathering and brainstorming forums with the community is key

• Would like to thank the organizers and the steering committee of
this workshop!

33

Conclusions

	Automatic Optimization and Code Generation for Asynchronous Task-Based Runtimes
	CONTEXT
	Addressing HPC/Exascale Challenges
	Addressing HPC/Exascale Challenges
	Addressing HPC/Exascale Challenges
	Embracing the Trend with HPC Community
	R-Stream Extensions for Addressing Exascale Challenges
	R-Stream Extensions
	R-Stream Extensions
	R-Stream + OCR
	OCR Paradigms
	R-Stream Optimizations for OCR – The Big Picture
	Automatic Generation of Runtime Paradigms
	Optimization on Data Decomposition
	Data Placement
	Automatic Generation of OCR Hints
	GENERIC RUNTIME SUPPORT
	Generic Runtime Layer
	Slide Number 19
	Slide Number 20
	Slide Number 21
	KEY Capabilities
	Scaling Task Dependence Computations
	On-the-fly Task Creation
	Self-unfolding Tasks and Data
	Self-unfolding Tasks and Data
	Self-unfolding Tasks and Data
	Self-unfolding Tasks and Data
	Self-unfolding Tasks and Data
	Conclusions

