
Towards Automatic Regularity 

Detection in Intel CnC C++

Louis-Noël Pouchet1 and Gabriel Rodriguez2

1Colorado State University
2University A Coruna, Spain

October 14th, 2017

9th Concurrent Collections Workshop



2

1-Slide Overview

♦ Objective: enable polyhedral optimization on (sub-)graphs which are 

regular/affine

▪ Exploit explicit, implicit/hidden, and data-dependent regularity

♦ Constraints:

1. Operate on C++ Intel CnC programs, but without building a C++ code analyzer

2. Do not modify the user code: optimization is transparent to the user

3. Generated transformed code which is always valid, whatever the input data

♦ Approach:

1. Generate an execution trace of the program

2. Reconstruct affine regions with specialized trace compression technique

3. Optimize affine regions with PoCC, generate new CnC sub-graph

4. Modified runtime: executes normal graph + affine graph (runtime skips a step in 

“normal” if it is already included in “affine”)



3

Motivation(s) of This Work

Key idea: some graphs have regularity,

exploit it to enable static compiler optimizations

♦ Motivation (official): enable polyhedral compilation on Intel CnC C++ 

graphs

♦ Motivation (in reality): determining when/where we can conveniently 

find regularity in the tag functions, without static analysis of the graph/tag 

functions themselves

♦ Motivation (unofficial): outline a system that could help detect regular 

sub-regions in irregular applications (e.g., MADNESS)

=> Although still preliminary, initial results show high potential ☺



4

The Concept of Regularity: Purely Static
env::(MM:0..N,0..N,0..N);

[A:i,k],[B:k,j],[C:i,j,k-1] -> (MM:i,j,k) -> [C:i,j,k];

for(int i = 0; i < num_blocks; i++)

for(int j = 0; j < num_blocks; j++)

{

std::shared_ptr<Tile2d<float> > tile;

Triple tag = Triple(i,j,num_blocks);

int block_size = c.block_size;

c.mat_C_blocks.get(tag, tile);

...........

Static analysis - model the graph as polyhedra:

MM : { MM[i,j,k] : 0 <= i,j,k < N };

Reads_MM : { MM[i,j,k] -> A[i,k], B[k,j], C[i,j,k-1] };

Writes_MM : { MM[i,j,k] -> C[i,j,k] };

Compile-time optimization: generate transformed polyhedral graph

MM_opt : { MM[ii,jj,kk] : 0 <= ii,jj,kk < N/T };

... (tiled graph) ...

Compile-time code generation: produce Intel CnC C++ program from polyhedral graph



5

The Concept of Regularity: Dynamic Discovery
env::(MMsome-range);

[A:tagfunc1()],[B:tagfunc2()],C[B:tagfunc3()] -> 

(MM:tagfunc4()) -> [C:tagfunc5()];

Static analysis  to model the graph as polyhedra: not possible, the graph is not affine!

MM : { MM[i,j,k] : 0 <= i,j,k < N };

Reads_MM : { MM[i,j,k] -> A[i,k], B[k,j], C[i,j,k-1] };

Writes_MM : { MM[i,j,k] -> C[i,j,k] };

Compile-time optimization: generate transformed polyhedral graph

…

[A:0],[B:0],[C:0] -> (MM : 0) -> [C:1]

[A:1],[B:1],[C:1] -> (MM : 1) -> [C:2]

...

[A:1024],[B:1024],[C:1024] -> (MM : 1024) -> [C:1025]

...

Runtime execution: profile the tag values generated

Affine trace compression: rebuild polyhedra from trace elements



6

Dynamic Regularity: Pros and Cons [1/2]

Pros

1. Does not need any static analysis of the input program

▪ Can be deeply templated Intel CnC C++ code, 

▪ Truly, entirely independent from how the CnC program is written

2. Can find regular regions inside irregular programs

▪ Typical example: representing a regular grid using an array of coordinates

▪ Can find partial regularity: a regular sub-region in the full program

▪ Can find “unknown” regularity: higher-dimensional regularity vs. low-dimensional 

irregularity

3. Enables full compatibility with existing polyhedral tools for CnC

▪ E.g., PIPES, PoCC-DFGR, and new tools to be developed!



7

Dynamic Regularity: Pros and Cons [2/2]

Cons (challenges to be solved)

1. Affine trace compression is challenging

▪ No unique way to represent the program, failure is very expensive

▪ Note: massive progresses by G. Rodriguez (CGO’16), making this work possible!

2. Requires to execute the original graph

▪ Analysis/optimization driven by the input data set

▪ Highly dependent on the tag semantics implemented by the user!

▪ Need to ensure the transformed program remains valid for any input data!

3. Partial regularity may be useless

▪ Finding 10 regions of one step instance each is useless, we want 1 region of 10 

instances!

▪ No guarantee there will be any regularity when executing on new data



8

Affine Trace Compression

Starting point: Rodriguez et al., “Trace-based affine reconstruction of 

codes”, CGO’16

♦ Prior work: from the trace of memory addresses accessed, rebuild 

the polyhedron modeling all these unique addresses

▪ Super fast! (seconds for billions of entries)

▪ Does not rebuild a polyhedral representation of the program

♦ New developments for this work:

▪ Rebuild the domain (i.e., description of tag values) for steps and items

▪ Connect item tags with step tags to form dataflow relation

♦ Key opportunities of using trace compression with CnC:

▪ Data is single assignment, tags are necessarily unique

▪ No need to rebuild the schedule: we can sort the tag values to improve 

reconstruction

http://dl.acm.org/citation.cfm?id=2854056


9

Affine Trace Compression for CnC: Status

♦ Works well for the tested examples (some iCnC samples)

▪ Very fast

▪ Sample apps are conveniently written with multidimensional tags

♦ But potential scalability issues in later stages (poly. transformation)

▪ Rebuilt domains may contain large integer coefficients (e.g., 10000i+100j+k)

▪ Need to investigate de-linearization techniques

♦ And potential scalability issues for partial regularity

▪ Trace compression can always succeed, by building one polyhedron per point

▪ Key difficulty: when to terminate the reconstruction in case of failure

♦ Likely, need to design filtering/sorting heuristics on the input trace

▪ As CnC graph is schedule-independent, can play with sorting/filtering prior to trace 

compression



10

Runtime Modifications

Main objective: no modification of the user code

=> in turn, we modify the runtime ☺

♦ Gather graph execution trace: use iCnC tracing capabilities
std::ostream & cnc_format( std::ostream& os, const halo_tag & t ) {

os << "(" << t.t << "," << t.x << "," << t.y << "," << t.z << "," << t.f << 

"," << t.d << ")";

return os;

}

♦ Execute transformed graph: hook into step prescription

▪ Main idea: generate a function checkIsInPolyGraph(step name, tag value) 

which returns true if this tag value is part of the polyhedral graph

▪ At start, the entire polyhedral sub-graph is prescribed

▪ Then the user graph/code proceeds normally

▪ Each time a user-code step is prescribed, if checkIsInPolyGraph(step,tag)=true 

then the step is not prescribed (it was already prescribed by the polyhedral sub-

graph)



11

Recommendations

♦ Generating trace with multidimensional tags is always better

▪ Propose, natively as part of the default data structures, MULTIDIMENSIONAL 

INTEGER TAG CLASSES, printable

▪ Right now, the user defines and implement her own tag class

▪ If the classes are part of iCnC, much easier to specialize runtime code for specific 

tag types 

♦ The step/item collection names need to be printed in the trace

▪ Printer functions available, but again need to be defined by the user

♦ Hooking into the prescribe function quite dirty

▪ Offer a tuner to “bypass” the prescription of a particular tag? 

♦ And what about OCR?

▪ These ideas apply too! ☺



12

Current Results and Status

♦ We only evaluated samples from the iCnC distribution

▪ Can successfully rebuild a polyhedral representation for (nearly) the full program for 

rtm_stencil (halo and tiled!), sor, matrix_inverse, heat_equation, etc.

▪ Dataset sizes are small, so “failure” of trace compression not an issue

▪ Trace generation + polyhedron reconstruction is nearly automated (small manual steps)

♦ We prototyped the prescribe hook for one case (manually)

▪ Polyhedron inclusion test is straightforward

▪ Seems to work, but not heavily tested…

♦ We did not evaluate the benefit of transformed graphs via PoCC

▪ Main issue: for good coarsening, data coarsening should be applied => user code change

▪ We expect benefits shown in DFGR and PIPES work to hold

♦ We still have to design a good algorithm for sub-region detection

▪ Precisely: failing “quickly enough” when a tag cannot be easily added to a polyhedron



13

Conclusion and Future Work

♦ Dynamic Regularity in CnC graph can be exploited

▪ Hybrid dynamic/static approach: profile once, transform, and generate always-

correct code. No inspector/executor used in this work.

▪ Possible only thanks to recent progresses in affine trace compression

▪ Runtime modifications were minimal, approach independent from the user code

▪ Preliminary results showed some of the potential of the approach, more tests needed

♦ CnC + affine trace compression = good fit!

▪ CnC graphs are schedule-independent, and tag values are unique ☺

▪ Still, quite some modifications/extensions needed from original CGO’16 

♦ Risks of this approach / limitations

▪ Totally dependent on the semantics of tags implemented by the user!

▪ Totally optimistic: when executing with different data, possibly no use of opt. graph


