
Incorpora(ng	more	of	a	large	app	
for	improved	analyzability		

CnC	Workshop,	October	14th,	2017	
	

Kath	Knobe	(Rice	University)		
Zoran	Budimlić	(Rice	University)	

	



Current	state	
Pros	and	cons	

	
	
Because	CnC	obeys	these	constraints		

+	it	is	highly	analyzable	and	opImizable	
-	it	only	applies	to	some	small	apps	or	small	pieces	of	larger	apps	

ComputaIon	steps	are	required:	
To	be	determinisIc	
To	be	terminaIng		
Not	to	be	part	of	a	co-rouIne	with	other	steps	

These	constraints	are	not	about	scheduling	or	placement	
	



Current	single	graph	

CnC	graph	

ENV	

Step	A	

Step	C	

Step	B	
Steps	

1	graph		
Doesn’t	necessarily	terminate	
DeterminisIc	wrt	input	
Wrt	co-rouIne	relaIonship:	just	one	graph	
Can	be	in	co-rouIne	w	env	

Many	disInct	staIc	step	collecIons	
Named		
Terminate	
DeterminisIc	wrt	input		
Not	in	co-rouIne	with	another	step	

1	unnamed	env	
											Wrt	co-rouIne	relaIonship:	just	one	env	
All		input	comes	from		it		

		All	output	goes	to	it	
It	creates	the	graph	
It		starts	up	the	graph	
It	terminates	the	graph	(if	graph	terminates)	
Not	necessarily	determinsiIc	
No	other	constraints	
Doesn’t	necessarily	terminate	

	
Hierarchical	version		
•  Step	

Unchanged	
•  Graph		

Many		
Each	is	like	the	non-hierarchical	

•  Env	
Many	
Each	is	like	the	non-hierarchical	

	



Classic	flat	perspec(ve	…	

•  We	don’t	know	anything	about	the	steps	except	what	each	
produces	and	consumes.	Each	step	is	opaque	(blackbox).	

•  The	graph	is	transparent	(analyzable/opImizable).	
•  We	don’t	know	anything	about	the	env	except	what	it	

produces	and	consumes.	The	env	is	opaque	(blackbox).	

…	carries	forward	to	hierarchy	



Goals	

•  Include	more	of	the	full	app	
•  Generalize	exisIng	work	
•  Extend	the	scope	of	opImizaIon	



Opaque	or	transparent		
	

Old	view	
	
•  The	env	is	opaque	

•  The	graph	is	transparent	

•  A	step	is	opaque	

New	View	
	
•  Any	computaIon	can	be	transparent	or	

opaque	
	
•  Terms	transparent/opaque	are	rela0ve:	

–  From	B	
									A	is	transparent			
–  In	this	discussion	
								We’re	viewing	A	as	opaque	
	

•  Might	be	a	so_ware	engineering	choice	
–  System	requirements	and	goals	
–  Stage	of	development	
–  Task	at	hand	
–  …		



•  ComputaIons	are	
–  Producers	and/or	consumers	
–  Named	
–  Have	no	requirement	to	terminate		
–  Have	no	requirement	to	be	determinisIc	
–  Can	be	in	co-rouIne	with	another	computaIons	
–  Any	computaIon	may	be	tagged	

•  MulIple	disInct	named	computaIons	might:		
–  Replace	our	single	unnamed	env	

•  Producing	data/control	
•  Consuming	data/control	

–  Appear	within	a	CnC	graph	

Proposal:		
generalize	to	computa(ons	



Generalize	to	Computa(ons	

Comp	

Comp	

Comp	

Comp	

Comp	



But	with	no		
loss	of	op(miza(on	poten(al	

Comp	

Comp	

Step-like	
Comp	A	

Step-like	
Comp	C	

Step-like	
Comp	B	



Step-like	computaIon	

More	flexibility:	
include	more	of	the	full	applica(on	

Comp	

comp	

comp	

Step-like	
Comp		

MulIple	non-steps	in	
a	graph	

MulIple	non-steps	
within	in	a	graph	



Mul(ple	computa(ons		
replace	our	single	ENV	

ComputaIon	
(CnC	graph)	

ComputaIon	A	

ComputaIon	B	
	

ComputaIon	C	
	



Non-step	computa(ons	with	dis(nct	I/O:	
Improved	understanding	&	analysis	

ComputaIon	
(CnC	graph)	

ComputaIon	A	

ComputaIon	B	
	

ComputaIon	C	
	

[X]	

[Z]	

[W]	

[Y]	

A	can’t	see	
[W]	or	[Z]	

[Y]	

C	can’t	see	
	[X]	or	[W]	

B	can’t	see	
	[X],	[Y]	or	[Z]	



Characteris(cs	of	non-step	computa(ons	

•  Even	if	they	are	not	step-like	we	might	be	able	to	use	whatever	we	
know	in	analysis	and	opImizaIon		

•  But	for	a	non-step	we	might	know	
–  It	terminates	even	if	it’s	not	determinisIc	
–  It’s	determinisIc	even	if	it	might	not	terminate	
–  It	is	determinisIc	and	terminates	but		
								involved	in	co-rouIne	

					Even	if	the	non-step	is	opaque	
	
•  The	normal	aeributes	of	a	step	

–  If	it’s	tagged,	it	can	be	control-ready,	data-ready,	ready,	executed	
–  If	computaIon	isn’t	guaranteed	to	complete	it	may	never	become	

executed	



Boarder	crossing	

Boarders	
•  Within	a	level	of	hierarchy	

	One	computaIon	to	another:	step/step	or	graph/graph	

•  Across	levels	of	hierarchy	
	 	Step/graph	

For	separate	development	(libraries	or	within	an	app)	allow	
renaming	of	the	collecIons	and	reordering	of	the	indices	

•  ArithmeIc	computaIon	(dependence	funcIons)	
	 	(foo:	j,	k)	does	a	put	of	[x:	j,	k]	and	
		 	(bar:	j,	k)	does	get	calling	the	same	instance	[x:	j,	k+1]	
•  For	libraries	or	separately	developed	components	even	within	the	

same	project.	
	(foo:	j,	k)	does	a	put	of	[x:	j,	k]			
	(bar:	j,	k)	does	get	[y:	k+1,	j]	

	



Non-step	computa(ons	might	have	some	
step-like	aRributes	

•  If	a	computaIon	terminates,	is	determinisIc	and	isn’t	involved	in	
co-rouInes,	it	is	a	step.	

•  But	a	non-step	computaIon	may	have	some	aeributes.	For	
example	
–  Might	be	known	to	terminate	even	if	it’s	not	determinisIc	
–  Might	be	determinisIc	even	if	it’s	not	known	to	terminate	

•  Suppose:	we	associate	with	non-step	computaIons	the	subset	of	
aeributes	that	actually	do	apply		
–  Even	if	the	computaIon	is	opaque	these	might	be	useful	for	analysis/

opImizaIon		
–  Need	to	extend	the	rule	for	aeribute	propagaIon	involving	non-steps	
–  Need	to	create	rules	for	propagaIng	properIes	(determinisIc,	…)	in	

the	hierarchy	



	
Legal	transforma(ons	

on	non-step	computa(ons		
	•  DecomposiIon	styles	on	non-step	computaIons	

–  If	a	computaIon	is	tagged	it	might	be	homogeneously	decomposed	
–  If	the	child	of	a	node	is	a	graph	the	node	can	be	heterogeneously	

decomposed	
•  TransformaIons		

–  We	are	now	allowing	co-rouInes.	We	can	transform	a	step-like	
computaIon	into	2	computaIons	that	result	in	a	co-rouIne.		

–  Merge	of	2	nodes		
•  If	each	terminates,	the	merger	terminates	
•  If	each	Is	determinisIc,	the	merger	is	determinisIc	

–  If	there	are	no	co-rouInes	among	the	components,	its	components	
can	be	serialized	

•  Can	we	incorporate	“constraints	on	hierarchy”	work	into	this	view?	



Advanced	



Crea(on,	I/O,	destruc(on	

•  When	we	talk	about	CnC	we	o_en	assume	the	
CnC	graph	exists.		

•  In	our	current	systems	some	non-CnC	
component,	called	env,	creates	it,	provides	
input,	starts	it	up,	receives	outputs	and	shuts	
it	down.		

•  How	that’s	done	hasn’t	been	really	part	of	CnC	
itself	and	varies	among	systems.		



Already	assuming		
significant	support	for	universal	CnC	

•  Classic	flat	CnC	
–  Names	are	staIcally	known	but	
–  Indices	may	be	:	staIcally	known,	input,	computed	by	the	applicaIon		

•  Hierarchical	CnC		 		
–  Homogeneous	decomposiIon	
•  The	“name”	at	some	level	in	the	hierarchy	includes	what	looks	like	an	index	above.		
	 	[“x”:	3]		decomposes	to	… ,		[“x,	3”:	4],	…	
•  Note:	the	“3”	above	might	be	staIcally	known,	input	or	computed	from	input	data	
•  This	implies		

The	“names”	might	be:	staIcally	known,	Input	or	computed	from	data	
New	instances	of	a	staIcally	known	graph	can	be	dynamically	computed	
Why	not	allow	graphs	be:	input	or	computed	from	input	data?	

•  The	top	level	our	any	hierarchy	is	idenIcal	to	that	for	our	Universal	CnC	app	
•  We	might	be	moving	closer	to	support	for	Universal	CnC	app		
–  The	CnC	spec	itself	is	input	to	universal	CnC	and	executed.	



	
	

Next	
		

•  This	was	all	about	computaIon.		
•  We	need	to	support	data	that	isn’t	single	
assignment.	



Conclusions	
Claims/hopes	

•  By	including	non-step	computaIons		
- We	allow	inclusion	of	more	of	the	customer	app	to	be	
analyzed	and	opImized	

•  By	idenIfying	staIc	step	characterisIcs		
				(determinisIc,	…)	that	apply	to	non-step	computaIons		

-	We	can	incorporate	them	into	analyzes	and	
opImizaIons		

•  By	applying	dynamic	step	aeributes																										
(data-ready,	…)	to	non-step	computaIons	as	
appropriate	

-	We	can	take	them	into	account	to	make	beeer	
scheduling	and	placement	decisions	



Future	

•  Evaluate	the	general	idea	in	the	context	of	a	
real	(but	small)	app		
One	that	includes	co-rouInes,	non-determinism,	non-
terminaIng	computaIons	

•  InvesIgate	legal	analyses	and	opImizaIons	
•  Implement:	first	in	our	flat	version	
•  Update	the	constraints	on	hierarchy	work	to	
incorporate	these	ideas	



END	



One	more	kind	of	“computaIon”		
•  for	dependence	funcIons	within	a	level	or	at	the	transiIon	from	

one	level	in	the	hierarchy	to	another		
–  A	grain	change:	Coarse/Fine		
–  Names	might	be	altered	
–  Tags	components	might	have	disInct	names	and	order	
–  The	value	of	a	tag	component	in	one	might	be	a	funcIon	of	the	

corresponding	tag	component	in	the	other	
	

•  What	are	its	possibiliIes	for	these	computaIons?	
–  Probably	should	terminate,	&	not	involved	in	co-rouInes	
–  DeterminisIc?	
–  Opaque?	Transparent?	
–  Might	be	generated	from	a	spec	
–  …	



Flaeen	hierarchy	

•  The	conversion	between	grains	in	hierarchy	is	now	explicit		
–  There	are	ordering	constraints	wrt	parent	and	child	
–  The	call/return	looks	like	an	arbitrary	constraint	
–  We	could	flaeen	them	to	remove	that	constraint		

•  It’s	really	3	ordered	but	disInct	computaIons,	each	could		
be	placed	and	scheduled		
–  The	coarse-to-fine	conversion			
–  The	lower	computaIon	itself			
–  The	fine-to-coarse	conversion	

•  This	grain	changing	code	could	be	useful	even	in	a	flat	
graph	



OR	among	non-step	computaIons	

All	must	have		
•  As	before:	

same	i/o	signature		

•  What	about	same	opImizaIon	
characterisIcs??		
determinisIc,	terminaIng,…	


