
MADNESS Algorithms Using the
Dataflow Model

Mohammad Mahdi Javanmard
IACS, Stony Brook University

Introduction to MADNESS

● MADNESS
○ Stands for “Multiresolution Adaptive Numerical Environment for Scientific Simulation”

○ It can be used as a solution of differential and integral equations in multi-dimensions

○ It has many applications in Quantum Chemistry, Boundary Value Problems, Solid State
Physics, Atomic and Molecular Physics in Intense Laser Fields, etc.

Introduction to MADNESS

● Scientific functions are approximated by a set of simpler functions (for
different parts of the function domain):

-L +L

y = ax + b

(0,0) ---> s = [a, b]

[-L, +L]

Introduction to MADNESS

● Scientific functions are approximated by a set of simpler functions (for
different parts of the function domain):

-L +L

y = ax + b
The amount of error is not acceptable :(

[-L, +L]

(0,0) ---> s = [a, b]
Depth = 0, Labeling = 0

Introduction to MADNESS

● Scientific functions are approximated by a set of simpler functions (for
different parts of the function domain):

-L +L

y = ax + b

(0,0) ---> s = [a, b]
Depth = 0, Labeling = 0

-L +L

(0,0) ---> []

y =
 a1x

+
b1

y = a
0x + b

0

(1,1) ---> s1 = [a1, b1][a0, b0] = s0 <-- (1,0)

Refine further !

[-L, +L]

[-L, 0] [0, +L]

Empty Node

Introduction to MADNESS

● Spatial functions are numerically represented as K-d trees

● MADNESS has several operators (algorithms) which
traverses these K-d trees.

● The interesting facts about these trees are:
○ In real applications, the coefficients don’t fit into a memory of a

single machine. Hence, having distributed memory paradigm
on a cluster of nodes is required !

○ As functions can be complicated at some parts of the domain,
the corresponding trees are extremely irregular and not
balanced !

○ Yet more interesting, there is no way to predict which parts of
the tree are not balanced and irregular !

■ Not that much static optimization techniques
applicable.

■ Hence, we need to rely on an intelligent runtime to
apply several dynamic optimization techniques.

Introduction to MADNESS

● MADNESS trees can be in either of the following
forms:

○ Reconstructed (or refined) form:
■ Data (S vectors) are always on the leaves of the tree.

○ Compressed form:
■ Data (S and D vectors) are in internal nodes of the

tree.
■ The name is misleading as the amount/number of

data doesn’t get decreased !

● Some operators (algorithms) require the operands
(inputs) to be in compressed form, others require
operands to be in reconstructed form !

CompressReconstruct

S0

S1 S2

Empty Node

Empty Node

Empty Node

Empty Node

D1

S0, D0

Empty Node

Introduction to MADNESS

● There are several MADNESS algorithms traversing these K-d trees, which
can be categorized into:

○ [Strictly] Top-down Traversal
■ Making K-d trees (or Refining K-d trees)
■ Reconstructing the compressed K-d tree

○ [Strictly] Bottom-up Traversal
■ Compressing the tree

○ Either Top-down or Bottom-up:
■ Binary Operators, e.g., sum, multiplication, etc

Introduction to MADNESS

● Compress [unary]
Operator, as an
example of Bottom-up
Tree Traversal
Algorithm:

Introduction to MADNESS

● Addition [binary]
operator, as an
example of Tree
Traversal Algorithm:

Introduction to MADNESS

● MADNESS also contains a lightweight
task-based runtime which is on top of
MPI + Intel TBB. But, (due to nature of
fork-join and phase-based paradigms), it
has several performance bottlenecks:

○ Global Synchronizations
○ Coarse Grain Parallelism

● A potential solution to resolve these
issues? Data-flow model

MADNESS+CnC

● As the starting point to implement
the MADNESS operators, we
looked at the CnC implementation
of the MADNESS expression
(A*B)+C, where A, B and C are the
following functions:

MADNESS+CnC

● A simple (A*B)+C
MADNESS computation in
CnC:

○ The granularity of the
step_collections were node
of the trees. I.e., per node of
the MADNESS tree, there is
an instance of
step_collection, for project,
add and multiply.

MADNESS+CnC

● However, there are two important optimizations which can be easily applied
to this computation:

○ Fusing all the operators into one operator (in A*B+C) as all the operators are Top-down:
■ In the new implementation, there is only one step_collection for projecting functions A,

B and C, and then, multiplying A and B and then, adding C to get the final result.
○ Coarsening the step_collections to work on small sub-trees instead of working on only one

nodes of the MADNESS trees !

● Here is the new CnC computation graph:

MADNESS+CnC

● Following figure shows the result of applying fusing and coarsening:

● X-axis: shows the level of coarsening
as a depth of the tree on which the
computation step operates.

● Y-Axis: shows the the execution time
seconds

MADNESS+CnC

● Lessons learned from the experiment:
○ The optimal height of coarsening the trees

step collections are traversing is 6.
○ For the heights less than 6, due to run-time

overhead (i.e, generating more instances of
step collections), we get worse result.

○ For the heights more than 6, due to having
slower step collections (as they traverse
bigger subtrees), we get worse result.

MADNESS+CnC

● Future work:
○ As mentioned, it is not possible to fuse all the operators. In other words, we can fuse only

operators which are all top-down or all bottom-up. So, we need to automate the analysis of
naive CnC computation graph and come up with the fused CnC computation graph.

○ Auto-tuning the execution of step_collections to determine the optimal height for the
subtrees to be traversed by the step_collections.

