o .
CnCL—I ROCHESTE

Locality Wall: Hardware Limitations and
Software Opportunities

Chen Ding

Professor
Rochester, NY

Oct. 14, 2017




Dawn of A New Era?

* Moore's Law

- 20,000 times smaller/faster

« 10um to Bnm

* running against the laws of physics and statistics
* Memory Wall

- Wulf and McKee, 1995

* solution
* bigger SRAM cache, prefetching

» LINPACK has tremendous temporal locality [DK IPDPS'00]

- Power Wall

-+ 2004, cooling unrealistic at 120W

- solution
- lower clock rate. multicore. SIMD. GPU
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Present Impasse

* Modern applications

* large data sets
* no predictable regularity

* Data movement problems take center stage

- dominant factors in speed and power
* Adding bandwidth

- observation by David Wang
+ 5G6B/s per core by Intel in the last two decades

» adding memory channels from 1 to 6

Chen Ding, University of Rochester
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https://www.hpcwire.com/2016/09/08/ibm-
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High Bandwidth Memory (HBM)

3D Memory(HBM)  gjjicon die
Base die D PKG Substrate
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Implications of the datacenter’s
shifting center.

BY MIHIR NANAVATI, MALTE SCHWARZKOPF,
JAKE WIRES, AND ANDREW WARFIELD

Non-
Volatile
Storage

“The arrival of high-speed, non-volatile storage ... is likely the most significant
architectural change that datacenter and software designers will face in the
foreseeable future.




30 XPOINT™ MEMORY MEDIA

Breaks the memory/storage barrier

MEMORY + STORAGE

3D XPoint™
SRAM DRAM . Latfg‘f Tl?%)c()ox NAND SSD HDD
Latency: 1X Latency: ~10X et Nl Latency: ~100,000X  Latency: ~10 Million X
Size of Data: 1X Size of Data: ~100X Size of Data: ~1,000X Size of Data: ~10,000X

Technology claims are based on comparisons of latency, density and write cycling metrics amongst memory technologies recorded on published specifications of in-market memory products against internal Intel specifications.

NVM Solutions Group Intel® Optane™ Technology Workshop

https://cdn.arstechnica.net/wp-content/uploads/2017/03/IntelR-Optane TM-Technology-Workshop-
Analyst-and-Press-Slides-3-15...-4.jpeg
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“Locality Wall" — Peter Kogge

* Memory complexity

* memory domains

* ports

* types

» links/protocols

- growing block sizes

* Non-locality

* consumes energy

+ exa-scale, 20 pJ per flop, unrealizable if any access misses in
cache

» Sparse problems
+ HPCG, SpMV, BFS/Graph500

Chen Ding, University of Rochester 10



Memory Problems in Software

» Software problems
- algorithms, data structure / layout, parallelization,
scheduling, task/data placement, cache/memory sharing ...
* Solution strategies
- abstractions: let programmers focus on what matters
* modularity: divide and conquer
* Locality
- closest access
* shortest data movement
* What does locality mean for software?

- assume dynamic allocation/sharing of local memory
* non-answer: temporal/spatial locality

Chen Ding MEMSYS 2017 11



* Access locality

* reuse distance of an access: amount of data since previous
access
* shorter reuse distance -> better locality

» Timescale locality

- footprint of length x: average WSS in all windows of length x
* smaller footprint -> better locality
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Chen Ding, University of Rochester 12



Memory Equalizer

Ye et al. MEMSYS 2017

Chen Ding, University of Rochester



Hybrid Memory Architecture

- HpMC in fist MEMSYS (2015)

» Su, Roberts, Leon, Cameron, de Supinski, Loh, Nikolopoulos

* a convincing case study

* HpMC chooses between PCache and HRank

Processor
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Processor
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Higher Order Theory of Locality (HOTL)

* Locality is represented by integer functions
* footprint fp(x)

» average working-set size for all windows of length x (x = O)

* miss ratio mr(c)
» for fully-associative LRU cache of size c

* Cache modeling becomes function operations
- mr(c) is the derivative of fp(x), or in Leibniz's notation

mr(c) = < fp(x)

fp(x)=c

Chen Ding, University of Rochester 16



Traffic Modeling

h(x) = rfp(x)

@ mV(Sdem) = %h(x)

DRAM traffic PCM traffic
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Memory Portion Reduction

DRAM traffic PCM traffic .
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Evaluation

* Apache Cassandra

’§5O%- —Cassandra
@ * open-source NoSQL db
S ok »+ 17 GB data
- * 7% DRAM portion at 10%
(@] . . .
L] migration traffic
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=< near 50%
Qo - 100% fraction cached
g » Other tests
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Migration traffic(pct accesses)

* All run with 8 threads

Chen Ding, University of Rochester 19
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- DRAM reduction vs. miss ratio
» good locality leads to effective reduction

Chen Ding, University of Rochester
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* Poor locality means ineffective reduction
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More Fractions
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* Multiple solutions » Useful mode
* Multiple objectives * write loca
- size, traffic, endurance - cache exc

Chen Ding, University of Rochester

S
ity [MEMSYS'16]
usivity [TACO'17]
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Cache and Memory Optimization

* Higher order theory of locality (HOTL)

* locality is represented by integer functions
» cache modeling becomes mathematical, w/ provable properties
- concavity [ASPLOS'13]

» composition invariance [USENIX'16]
» cache exclusivity: correctness/uniqueness [TACO'17]

» so does cache optimization
* LAMA: memory allocation in Memcached [USENIX'16]

* monotonicity implied by optimality
* Higher order theory of memory demand (HOTM)

* liveness metrics [ISMM'14]
» concurrent memory allocation [ISMM16]
- symmetry implied by optimality

Chen Ding MEMSYS 2017 24



Concurrent Collections

* CnC

» separation of what and how
» domain and tuning specification

» collections and steps

- communication centric
» explicit dependences

* graph programming model
- compiled
- static binding between collections and ftuners

Chen Ding, University of Rochester
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Freedom to Optimize

» Existing parallel languages

+ fixed parallelization and data layout
. OpenMP, CUDA, MPT+X

» Cilk family
- fixed data layout
- Jade and recent DSLs
- CnC

* “future proof"”
- only the essential elements

* e.g. Nick's hand-on tutorial
» stencil can be 1D/2D arrays or a hash table

Chen Ding, University of Rochester
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Locality Optimization in CnC

» Static locality analysis

* footprint and miss ratio curves
* per step per item

» Selecting/composing CnC Tuners

* locality ranking of alternative implementations of each step
» with parameters

- combined effect in all steps
- Optimization
- formalization of the implementation space

» search for the best solution
* lower bound work by Luis et al.

» performance synthesis

Chen Ding, University of Rochester
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AI? What about AM?

* Locality theory + deep learning

* LT to produce traffic numbers
» DL to map traffic numbers to
performance

* Memory and intelligence

* meta-cognition is how confident

you are in what you think you
know

* it means fluency
» fluency means efficiency
» speed of computation

- speed of data access

Chen Ding, University of Rochester
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Summary

* Locality Wall

- parallel, distributed and heterogeneous processing and
memory
» data movement is most critical

* Locality
- access and timescale locality
- mathematical relations/properties
+ Memory equalizer
+ utilization, traffic, power, endurance
- constrained optimization
- CnC

* freedom to optimize
* locality tuners

Chen Ding, University of Rochester
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