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Dawn of A New Era?

• Moore’s Law 
• 20,000 times smaller/faster 
• 10𝝁m to 5nm 
• running against the laws of physics and statistics 

• Memory Wall 
• Wulf and McKee, 1995 
• solution 

• bigger SRAM cache, prefetching 
• LINPACK has tremendous temporal locality [DK IPDPS’00] 

• Power Wall 
• 2004, cooling unrealistic at 120W 
• solution 

• lower clock rate, multicore, SIMD, GPU

2



Chen Ding, University of Rochester

Present Impasse

• Modern applications 
• large data sets 
• no predictable regularity 

• Data movement problems take center stage 
• dominant factors in speed and power 

• Adding bandwidth 
• observation by David Wang 

• 5GB/s per core by Intel in the last two decades 
• adding memory channels from 1 to 6
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IBM Power8

Thread and Data Placements on NUMA Machine

1. Machine Model

A scale-out power8 server is composed of two duel chip
modules(DCM). Each DCM has two power8 chips. Each
power8 chip has a memory controller and 5-6 physical
cores. Each core can have up to 8 simultaneous multi-
threads(SMT). The power8 chips are connected by SMP-
X bus within a DCM, and by SMP-A bus across DCMs,
showed in Fig. 1.

Chapter 2. Architecture and technical overview 31

Figure 2-2 shows the logical system diagram for the Power S822L.

Figure 2-2   Power S822L logical system diagram

2.1  The IBM POWER8 processor

This section introduces the latest processor in the IBM Power Systems product family and 
describes its main characteristics and features in general.
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Figure 1: The architecture of two socket scale-out power8
machine(S822L Model). Copied from IBM Power Systems
S812L and S822L Technical Overview and Introduction,
Fig. 2-2 .

Coherence Protocol: snooping, P155, POWER8 Proces-
sor Users Manual for the Single-Chip Module.

Routing between P8 Chips: According to “The cache and
memory subsystems of the IBM POWER8 processor”, the
routing follows a preferred shortest path, however, it will
dynamically adjust to avoid congestion. We can’t find any
detail about the adjusting. To make the problem simple, we
assume that 1) the routing is static, 2) an inter DCM message
always go across the DCMs at first, then traverse in the
DCM. For example, the message from the top left P8 chip
in Fig. 1 to the bottom right chip will go to the the top right
chip(in the right DCM) at first, then go to the destination.

2. TPDP Design

The TPDP system has 5 main components :

1. Variable Marking: marking variables considered during
optimization

2. Profiling: get the memory access trace from program to
be optimized

3. Locality modeling: including two parts using the same
model. The first part takes a memory access trace and
gives some statistic information, which will be intro-
duced later. The second one takes a data and thread place-
ment and figures out the amount of traffics

4. Performance modeling: given the amount of traffics and
outputs estimate the performance of the program

5. Searching: search for a good data and thread placement
that maximize the performance of the system

The workflow of TPDP system are showed in Fig. 2. In later
section, placement refers to data and thread placement if no
explicit description.

Program

Profiling

Insert Directive

Model Locality
Initialization

Search Engine

Locality Modeling
Computing

Enforce 
Placements

Optimized 
Program

Performance 
Modeling

Figure 2: TPDP workflow, the unfilled boxes stand for the
input and output of TPDP, the blue boxes stand for the steps
marking the variables, the green boxes are the components
shown before.

Marking variables: The marked variables will be consid-
ered during optimization, they are usually arrays. A variable
can be a set of individual variables, like, a segment of an
array.

Two approaches are implemented for marking the vari-
ables. One is insert directives and the other one is overriding
library function, malloc. The first way requires programmers
modifying the code while the second way doesn’t. However,
the second way involves more problems – like mapping sys-
tem calls to code – and makes the system more complicate.
For practice and further evaluation, we designed the second
approach, but to focus on preliminary evaluation, we use the
first way.

Both of the approaches consist of two parts, marking
the variable and enforce the placement. The first part is
used for profiling and the second one is used for enforcing
the placement by calling low-level system functions. The
following code illustrates the directive and the enforcement:

1 i n t a [ 1 0 2 4 ] ;
2 / / mark a v a r i a b l e i n c l u d i n g a p a r t o f t h e a r r a y
3 var2addr ( ” a ” , a+128 , a+512) ;
4 / / p l a c e t h e v a r i a b l e t o NUMA node 0
5 placedata ( a+128 , a+512 , 0 ) ;

There are two objectives of marking the variables, 1) to
map variables to virtual addresses, 2) to reduce the overhead
of analysis and optimizing by considering limited variables.
The memory accesses got in profiling stage are virtual ad-
dresses, the analysis and placement must be done on vari-
ables, therefore, we need the mapping to get back to vari-
ables after profiling stage, which is working on virtual ad-
dresses.
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Table 4: Model of Bandwidth Consumption.

Between Node src’s cache and Node dst’s cache

filltime = fill time of src’s cache

request snoops =
P

m homed at dst
requestsm[src]

non-data responses =
P

m homed at src
sharersm[dst]

data responses =
P

i filltime
forwards[(src,dst)][i]

bandwidth consumption = request snoops + request snoops + data responses

Between Node src’s cache and Node dst’s memory
filltime = fill time of src’s cache

writebacks =
P

m homed at dst
writebacksm[src]

memory loads =
P

i� filltime
forwards[(src,dst)][i]

bandwidth consumption = writebacks + memory loads

ment (DP). The performance impact of TP and DP are tightly
coupled together. Therefore prior work mainly optimizes an
iterative fashion. Different from the prior work, our method
decouples these two placements and optimizes them sepa-
rately. For each type of placement, all the candidate choices
are analyzed in batches. In this cause, through this disserta-
tion, we refer the prior iterative method as TPDP n and our
method as TPDP.

The task of TPDP is to balance the bandwidth consump-
tion within the system and maximize the throughput. With
the help of a locality model, we can quantify bandwidth
consumption and throughput. The NUMA machine can be
viewed as a network consisting of on-chip caches and off-
chip memories. Table 4 describes the model of bandwidth
consumption on each link in the network. We further define
the throughput based on the bandwidth consumption:

throughput =
bandwidth capacity

bandwidth consumption

Given a machine configuration (network topology, cache
capacity, bandwidth capacity, etc) and a program’s memory
access stream, we can model the throughput of the intercon-
nect in the system. The interconnect consists of two types
of links: the cache-to-cache links (CC links) and the cache-
to-memory links (CM links). The system throughput as sum
of the smallest throughput over CC links and the smallest
throughput of CM links. TPDP evaluates every placement
plan by their system throughput.

memory

16,000

17,000

20,000

21,000
22,000 20,000

memorymemory

memory

42,000

50,000 51,000

51,000

cache-to-memory linkcache-to-cache link

System Throughput  = 16,000 + 42,000 = 58,000

shared cache

shared cache shared cache

shared cache

Figure 4: Example of performance model: The numbers in
the figure represent the throughput of the links.

5. Evaluation
We evaluate TPDP in two aspects:

• The potential performance benefit by using TPDP.
• The overhead of profiling using TPDP.

5.1 Experiment Setup

Benchmark Six OpenMP benchmarks from NAS Parallel
Benchmark Suite (NPB) [? ] were used (BT, CG, FT, LU,
MG and SP). TPDP exposes a set of C interfaces for the
purpose of collecting data at run-time. Therefore we chose
a C implementation of these benchmarks [? ]. We use the C
input size to run the experiments.

Testbed All our experiments were performed on a 12-core
Intel machine (with 2 hyper-threads per core), which con-
sists of two 2.4GHz Intel Xeon E5-2620 processors con-
nected with QPI. Each socket has 6 cores, a shared 15MB
last level cache and a 4GB local DRAM. The bandwidth

6 2016/11/2
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IBM Minsky

6
https://www.hpcwire.com/2016/09/08/ibm-
debuts-power8-chip-nvlink-3-new-systems/
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High Bandwidth Memory (HBM)
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Implications of the datacenter’s  
shifting center.

BY MIHIR NANAVATI, MALTE SCHWARZKOPF,  
JAKE WIRES, AND ANDREW WARFIELD

FOR  T HE ENTIRE careers of most practicing computer 
scientists, a fundamental observation has consistently 
held true: CPUs are significantly more performant 
and more expensive than I/O devices. The fact that 
CPUs can process data at extremely high rates, while 
simultaneously servicing multiple I/O devices, has had 
a sweeping impact on the design of both hardware and 
software for systems of all sizes, for pretty much as 
long as we have been building them.

This assumption, however, is in the process of being 
completely invalidated.

The arrival of high-speed, non-vol-
atile storage devices, typically referred 
to as storage class memories (SCM), 
is likely the most significant architec-
tural change datacenter and software 
designers will face in the foreseeable 
future. SCMs are increasingly part of 
server systems, and they constitute a 
massive change: the cost of an SCM, at 
$3,000–$5,000, easily exceeds that of a 
many-core CPU ($1,000–$2,000), and 
the performance of an SCM (hundreds 
of thousands of I/O operations per sec-
ond) is such that one or more entire ma-
ny-core CPUs are required to saturate it.

This change has profound effects:
1. The age-old assumption that I/O 

is slow and computation is fast is no 
longer true: This invalidates decades 
of design decisions that are deeply em-
bedded in today’s systems.

Non-
Volatile 
Storage
“The arrival of high-speed, non-volatile storage … is likely the most significant 
architectural change that datacenter and software designers will face in the 
foreseeable future. ”
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https://cdn.arstechnica.net/wp-content/uploads/2017/03/IntelR-OptaneTM-Technology-Workshop-
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“Locality Wall”  — Peter Kogge

• Memory complexity 
• memory domains 
• ports 
• types 
• links/protocols 
• growing block sizes 

• Non-locality 
• consumes energy 
• exa-scale, 20 pJ per flop, unrealizable if any access misses in 

cache 
• Sparse problems 

• HPCG, SpMV, BFS/Graph500
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Memory Problems in Software

• Software problems 
• algorithms, data structure / layout, parallelization, 

scheduling, task/data placement, cache/memory sharing … 
• Solution strategies 

• abstractions: let programmers focus on what matters 
• modularity: divide and conquer  

• Locality  
• closest access 
• shortest data movement 

• What does locality mean for software? 
• assume dynamic allocation/sharing of local memory 
• non-answer: temporal/spatial locality

11
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fp(3) = 3

a b c a b c
3

3
3

3 3
2

2

3

fp(3) = 10/4 = 2.5

a b c c b a

• Access locality 
• reuse distance of an access: amount of data since previous 

access 
• shorter reuse distance -> better locality 

• Timescale locality 
• footprint of length x: average WSS in all windows of length x  
• smaller footprint -> better locality 

3∞ 3 3∞ ∞ 1 2 3∞ ∞ ∞
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Memory Equalizer 

Ye et al. MEMSYS 2017
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Hybrid Memory Architecture

• HpMC in fist MEMSYS (2015) 
• Su, Roberts, Leon, Cameron, de Supinski, Loh, Nikolopoulos 
• a convincing case study 
• HpMC chooses between PCache and HRank

14

as speci�cations from a user, expressing local constraint for
each memory.
From the outset, virtual memory is the abstraction and

optimized use of actual memories. The goal of a memory
equalizer is to manage more diverse and complex memories.

This shift from SP to EQ is to address two challenges. First,
a memory equalizer performs lateral memory management.
In EQ, an application stores its data laterally in di�erent
types of memories. In comparison, SP manages just one type
of fast memory. In EQ, memory allocation must be tuned
for all memory types. In SP, the trade-o� happens mainly
between capacity and throughput. In EQ, each memory type
has di�erent strength and weakness compared to DRAM
and requires di�erent trade-o�s. Recent examples include
the trade o� between energy and speed (see Section 2.1) and
between latency and bandwidth [14].2
Second, an equalizer serves multiple objectives. There

are measures such as performance, power, persistence and
lifetime, in which no one strictly dominates the rest. Each
speci�c problem may still have a single goal as a weighted
mixture of multiple objectives, but the weights in the mix-
ture may change from system to system, user to user, and
application to application. A general solution should allow
optimization for an arbitrarily weighted objective (or tell the
user if no such solution exists).
This position paper starts a tentative step in this new di-

rection. As the �rst step, we present an abstract design called
fraction cache. It divides program data into two parts: the
cached fraction and the uncached fraction. For the �rst frac-
tion, it uses the familiar cache mechanisms to dynamically
place data on two memories and move data between them.
Given the size of the memories, i.e. the cache size, it uses the
existing techniques of cache modeling to predict the access
at each memory and the amount of data migration.

The fraction cache creates a parameterized solution space:
a memory equalizer can choose how many fractions to use,
which fraction uses which memories, and at what memory
sizes. The creation of this solution space is the key to solve
EQ. First, the fraction cache is �exible. The large solution
space is likely to contain a good solution that satis�es a
complex objective. Second, the fraction cache predicts the
quality of all solutions and uses the prediction to �nd the
best one. We call the latter deductive optimization, since the
result is deduced rather than obtained through testing.
The rest of the paper is organized as follows. Section 2

presents the fraction cache and shows that it is general, �exi-
ble, and more importantly, permits multi-objective optimiza-
tion. Section 3 evaluates how the fraction cache may reduce
the DRAM demand in a set of test programs. Finally, the last
two sections discuss related work and summarize.

2Ramos and Hoe�er showed that although the integrated Micron Multi
Channel DRAM (MCDRAM) on Intel Knight Landing has much higher
bandwidth than DRAM, it also has slightly higher access latency.

2 Fraction Cache Theory and Optimization
This section �rst reviews a previous study, then shows the
fraction cache and its parameterized solution space, and
�nally its deductive optimization.

2.1 Motivation
In the �rst MEMSYS conference, Su et al. presented a study
of two architectures of hybrid DRAM and PCMmemory [18].
As shown in Figure 2, reproduced from the original paper,
the �rst architecture uses DRAM as the cache of PCM, and
the second organizes DRAM and PCM laterally. They called
them Page Cache and Historical Ranking, or PCache and
HRank in their paper.
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ABSTRACT
DRAM technology faces density and power challenges to in-
crease capacity because of limitations of physical cell design.
To overcome these limitations, system designers are explor-
ing alternative solutions that combine DRAM and emerg-
ing NVRAM technologies. Previous work on heterogeneous
memories focuses, mainly, on two system designs: PCache,
a hierarchical, inclusive memory system, and HRank, a flat,
non-inclusive memory system. We demonstrate that neither
of these designs can universally achieve high performance
and energy e�ciency across a suite of HPC workloads. In
this work, we investigate the impact of a number of multi-
level memory designs on the performance, power, and energy
consumption of applications. To achieve this goal and over-
come the limited number of available tools to study heteroge-
neous memories, we created HMsim, an infrastructure that
enables n-level, heterogeneous memory studies by leverag-
ing existing memory simulators. We, then, propose HpMC,
a new memory controller design that combines the best as-
pects of existing management policies to improve perfor-
mance and energy. Our energy-aware memory management
system dynamically switches between PCache and HRank
based on the temporal locality of applications. Our results
show that HpMC reduces energy consumption from 13% to
45% compared to PCache and HRank, while providing the
same bandwidth and higher capacity than a conventional
DRAM system.

CCS Concepts
•Hardware � Emerging architectures; Platform power
issues; Memory and dense storage; •Software and its en-
gineering � Main memory;
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Keywords
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1. INTRODUCTION
While memory bandwidth has increased over the years,

new challenges have emerged as system designers attempt
to increase DRAM capacity to meet the demand of applica-
tions within a reasonable power budget. With large-scale,
in-memory data analytics now driving the demand for mem-
ory capacity, bandwidth, and latency, traditional DRAM
technologies are insu�cient because of high static power con-
sumption, limited capacitor downscaling and limited band-
width scaling from single-level designs [23].

Earlier research to overcome DRAM’s power limitations [4,
13, 17, 18, 27] proposed heterogeneous memory systems
that combine DRAM, for performance, with non-volatile
RAM (NVRAM) memory, for power-conscious capacity scal-
ing. NVRAM technologies include phase change memory
(PCM) [25] and STT-RAM [2]. These heterogeneous de-
signs include new memory management policies to improve
performance and reduce energy consumption, using two fun-
damental memory organizations (see Figure 1).

1LM

2LM

Processor

1LM 2LM

Processor

(a) PCache (b)HRank

Figure 1: Heterogeneous main memory organiza-
tions: (a) PCache, a hierarchical, inclusive system,
and (b) HRank, a flat, exclusive system.

Figure 1(a) shows a hierarchical, inclusive system. The
first level of main memory, 1LM, is used as a cache for the
second level, 2LM. This is similar to existing cache hierar-

chies in current systems but for main memory. The 1LM
memory is not visible to the operating system (OS) and is
managed by the memory controller (MC). Memory manage-
ment policies for this design [10, 17] treat 1LM as an as-
sociative cache and use LRU replacement to migrate pages.
In this paper, we refer to these class of policies as PCache
or Page Cache for main memory. Note that PCache is dif-
ferent from the page cache term used in kernel file systems
referring to a memory cache to store recent data from disk.

Figure 1(b) shows a flat, exclusive system. In this de-
sign, 1LM and 2LM are exclusive physical memory spaces.
The OS manages both memory spaces while the MC su-
pervises page migrations between them. Several policies to
migrate pages in this flat design have appeared recently [18,
27]. These policies use the following principles: (1) Place
performance-critical pages in 1LM and non-performance-
critical pages in 2LM, to achieve a combination of overall
high performance and low power dissipation; (2) Rank pages
based on history of the number of references and access re-
cency. (3) Periodically migrate pages between 1LM and 2LM
based on their ranking history. In this paper, we refer to this
type of policies as HRank or Historical Ranking.

Although these two memory policies have exhibited promis-
ing results, we show that neither policy sustains high per-
formance and, at the same time, low energy consumption
across a range of high-performance computing (HPC) work-
loads. Table 1 shows the memory bandwidth and energy
consumption of two HPC applications using these policies
(we describe these experiments in Section 4). For pF3D,
PCache is better than HRank from an energy consumption
point of view. However, for LULESH, HRank is better be-
cause it provides almost the same performance as PCache
while using less energy. As we will demonstrate later, the
performance and energy characteristics of these policies are
application dependent. For example, when data reuse is
low, PCache may result in excessive data migrations, while
HRank can save energy by delaying such migrations and di-
rectly accessing the 2LM. These observations motivate our
investigation toward more e�ective management policies of
heterogeneous memory systems.

Table 1: Performance and energy of pF3D and
LULESH under two memory policies.

Application Policy Bandwidth Energy

pF3D
PCache 7.43 GB/sec 167.6 J
HRank 11.49 GB/sec 218.0 J

LULESH
PCache 7.91 GB/sec 192.6 J
HRank 7.99 GB/sec 157.3 J

We faced two significant challenges in this work. First,
the number of tools available to study multi-level memories
is insu�cent to analyze and compare memory management
policies for application simulations. And, second, the lim-
ited guidance and insights into the impact of heterogenous
memories on the performance, power, and energy consump-
tion of applications.

In the first part of this paper, we present a trace-based
simulator called HMsim to simulate multi-level, heteroge-
neous memory systems. It leverages well-known simulation
components: the AMD SimNowTM simulator1 for proces-

1http://developer.amd.com/tools-and-sdks/
cpu-development/simnow-simulator/

sor simulation and the University of Maryland’s DRAM-
Sim [20] for the simulation of each level of memory. We
execute an application on the AMD SimNow simulator to
generate memory traces for each level of memory and, then,
these traces are fed to di�erent instances of DRAMSim to
obtain memory performance and energy characteristics. For
the second memory level, we re-architected DRAMSim to
simulate an emerging PCM memory.

In the second part of the paper, we propose HpMC (Hy-
brid Policies Memory Controller), a new memory controller
design that selectively employs the PCache and HRank poli-
cies to deliver better performance and lower energy con-
sumption. HpMC implements a policy switching engine and
several new components that extend a single-level MC to fa-
cilitate switching policies and migrating pages between 1LM
and 2LM. In addition, HpMC implements an energy-aware
scheme that periodically analyzes temporal locality based on
reuse distance and uses the result as a guide to switch be-
tween PCache and HRank for energy optimization. HpMC
is a co-designed hardware-software mechanism that manages
memory at a page granularity. In the HMsim system, HpMC
is implemented in the AMD SimNow simulator to interface
the two memory levels simulated by DRAMSim.

We use pF3D and LULESH, two HPC applications of in-
terest to the U.S. Department of Energy, to understand how
PCache and HRank impact performance and energy. We
also analyze the spatial and temporal locality of numerous,
diverse memory access patterns collected from the CORAL
benchmarks2 and lmbench [11]. These experiments guide
the design of HpMC, our energy-aware memory controller.
HpMC reduces energy consumption from 13% to 45% on
our suite of applications compared to well-know two-level
management policies, while providing almost the same band-
width and larger capacity than a DRAM-only system.

The contributions of this work are as follows:

• A heterogeneous memory simulator designed to ana-
lyze memory performance and energy in a two-level
memory system. It couples fast processor simulation
with detailed memory simulation. We validate this in-
frastructure against two real compute systems.

• A memory controller design to enable switching be-
tween memory policies to deliver high performance and
energy e�ciency. Our empirical findings suggest that
no single policy delivers the best performance and en-
ergy consumption for a range of HPC workloads.

• A new energy-aware scheme that dynamically switches
between memory management policies to optimize for
energy-e�ciency based on the temporal locality of ap-
plications.

• Temporal locality of applications is an e�ective metric
to guide a two-level memory management system for
performance and energy considerations.

2. HPMC DESIGN
Figure 2 shows a block diagram of the major components

of our hybrid policies memory controller, HpMC. HpMC is
designed to process read and write requests from the last-
level cache (LLC) and route requests to specific memory

2https://asc.llnl.gov/CORAL-benchmarks/

Figure 2. The two architectures of hybrid DRAM and PCM
memory, reproduced from Su et al. in MemSys 2015 [18].

Su et al. showed two example applications. pF3D has good
locality and therefore better performance and lower energy
in the vertical PCache than in the horizontal HRank, while
LULESH has poor locality, so PCache is not e�ective, and as
a result, HRank is more energy e�cient. Su et al. developed
a new memory controller called HpMC to switch between
PCache an HRank and make the best choice for each appli-
cation.
The study by Su et al. shows convincingly that neither

PCache or HRank is su�cient to achieve both high perfor-
mance and energy e�ciency across di�erent workloads. Fol-
lowing their approach of combining existing solutions, we
next develop a new technique that provides a greater range
of solution choices.

2.2 Fraction Cache
A fraction cache divides the program data into fractions. In
the basic design, we randomly divide program data into two
fractions and store them in two types of memories: DRAM
and PCM. One fraction is cached in DRAM and evicted to
PCM. The other fraction is stored directly in PCM. We may
distinguish by calling them the cached fraction and the un-
cached fraction.

A fraction cache has the following parameters:
• Total data sizem, the unit of which is usually a page.
• The cached fraction szfr, which is a size between 0 and
m. The cached fraction uses DRAM as the cache and
PCM the target of eviction.

2



Chen Ding, University of Rochester 15

proc

DRAM PCM

cached fraction f uncached 1-f

as speci�cations from a user, expressing local constraint for
each memory.
From the outset, virtual memory is the abstraction and

optimized use of actual memories. The goal of a memory
equalizer is to manage more diverse and complex memories.

This shift from SP to EQ is to address two challenges. First,
a memory equalizer performs lateral memory management.
In EQ, an application stores its data laterally in di�erent
types of memories. In comparison, SP manages just one type
of fast memory. In EQ, memory allocation must be tuned
for all memory types. In SP, the trade-o� happens mainly
between capacity and throughput. In EQ, each memory type
has di�erent strength and weakness compared to DRAM
and requires di�erent trade-o�s. Recent examples include
the trade o� between energy and speed (see Section 2.1) and
between latency and bandwidth [14].2
Second, an equalizer serves multiple objectives. There

are measures such as performance, power, persistence and
lifetime, in which no one strictly dominates the rest. Each
speci�c problem may still have a single goal as a weighted
mixture of multiple objectives, but the weights in the mix-
ture may change from system to system, user to user, and
application to application. A general solution should allow
optimization for an arbitrarily weighted objective (or tell the
user if no such solution exists).
This position paper starts a tentative step in this new di-

rection. As the �rst step, we present an abstract design called
fraction cache. It divides program data into two parts: the
cached fraction and the uncached fraction. For the �rst frac-
tion, it uses the familiar cache mechanisms to dynamically
place data on two memories and move data between them.
Given the size of the memories, i.e. the cache size, it uses the
existing techniques of cache modeling to predict the access
at each memory and the amount of data migration.

The fraction cache creates a parameterized solution space:
a memory equalizer can choose how many fractions to use,
which fraction uses which memories, and at what memory
sizes. The creation of this solution space is the key to solve
EQ. First, the fraction cache is �exible. The large solution
space is likely to contain a good solution that satis�es a
complex objective. Second, the fraction cache predicts the
quality of all solutions and uses the prediction to �nd the
best one. We call the latter deductive optimization, since the
result is deduced rather than obtained through testing.
The rest of the paper is organized as follows. Section 2

presents the fraction cache and shows that it is general, �exi-
ble, and more importantly, permits multi-objective optimiza-
tion. Section 3 evaluates how the fraction cache may reduce
the DRAM demand in a set of test programs. Finally, the last
two sections discuss related work and summarize.

2Ramos and Hoe�er showed that although the integrated Micron Multi
Channel DRAM (MCDRAM) on Intel Knight Landing has much higher
bandwidth than DRAM, it also has slightly higher access latency.

2 Fraction Cache Theory and Optimization
This section �rst reviews a previous study, then shows the
fraction cache and its parameterized solution space, and
�nally its deductive optimization.

2.1 Motivation
In the �rst MEMSYS conference, Su et al. presented a study
of two architectures of hybrid DRAM and PCMmemory [18].
As shown in Figure 2, reproduced from the original paper,
the �rst architecture uses DRAM as the cache of PCM, and
the second organizes DRAM and PCM laterally. They called
them Page Cache and Historical Ranking, or PCache and
HRank in their paper.
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ABSTRACT
DRAM technology faces density and power challenges to in-
crease capacity because of limitations of physical cell design.
To overcome these limitations, system designers are explor-
ing alternative solutions that combine DRAM and emerg-
ing NVRAM technologies. Previous work on heterogeneous
memories focuses, mainly, on two system designs: PCache,
a hierarchical, inclusive memory system, and HRank, a flat,
non-inclusive memory system. We demonstrate that neither
of these designs can universally achieve high performance
and energy e�ciency across a suite of HPC workloads. In
this work, we investigate the impact of a number of multi-
level memory designs on the performance, power, and energy
consumption of applications. To achieve this goal and over-
come the limited number of available tools to study heteroge-
neous memories, we created HMsim, an infrastructure that
enables n-level, heterogeneous memory studies by leverag-
ing existing memory simulators. We, then, propose HpMC,
a new memory controller design that combines the best as-
pects of existing management policies to improve perfor-
mance and energy. Our energy-aware memory management
system dynamically switches between PCache and HRank
based on the temporal locality of applications. Our results
show that HpMC reduces energy consumption from 13% to
45% compared to PCache and HRank, while providing the
same bandwidth and higher capacity than a conventional
DRAM system.
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•Hardware � Emerging architectures; Platform power
issues; Memory and dense storage; •Software and its en-
gineering � Main memory;
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1. INTRODUCTION
While memory bandwidth has increased over the years,

new challenges have emerged as system designers attempt
to increase DRAM capacity to meet the demand of applica-
tions within a reasonable power budget. With large-scale,
in-memory data analytics now driving the demand for mem-
ory capacity, bandwidth, and latency, traditional DRAM
technologies are insu�cient because of high static power con-
sumption, limited capacitor downscaling and limited band-
width scaling from single-level designs [23].

Earlier research to overcome DRAM’s power limitations [4,
13, 17, 18, 27] proposed heterogeneous memory systems
that combine DRAM, for performance, with non-volatile
RAM (NVRAM) memory, for power-conscious capacity scal-
ing. NVRAM technologies include phase change memory
(PCM) [25] and STT-RAM [2]. These heterogeneous de-
signs include new memory management policies to improve
performance and reduce energy consumption, using two fun-
damental memory organizations (see Figure 1).

1LM

2LM

Processor

1LM 2LM

Processor

(a) PCache (b)HRank

Figure 1: Heterogeneous main memory organiza-
tions: (a) PCache, a hierarchical, inclusive system,
and (b) HRank, a flat, exclusive system.

Figure 1(a) shows a hierarchical, inclusive system. The
first level of main memory, 1LM, is used as a cache for the
second level, 2LM. This is similar to existing cache hierar-

chies in current systems but for main memory. The 1LM
memory is not visible to the operating system (OS) and is
managed by the memory controller (MC). Memory manage-
ment policies for this design [10, 17] treat 1LM as an as-
sociative cache and use LRU replacement to migrate pages.
In this paper, we refer to these class of policies as PCache
or Page Cache for main memory. Note that PCache is dif-
ferent from the page cache term used in kernel file systems
referring to a memory cache to store recent data from disk.

Figure 1(b) shows a flat, exclusive system. In this de-
sign, 1LM and 2LM are exclusive physical memory spaces.
The OS manages both memory spaces while the MC su-
pervises page migrations between them. Several policies to
migrate pages in this flat design have appeared recently [18,
27]. These policies use the following principles: (1) Place
performance-critical pages in 1LM and non-performance-
critical pages in 2LM, to achieve a combination of overall
high performance and low power dissipation; (2) Rank pages
based on history of the number of references and access re-
cency. (3) Periodically migrate pages between 1LM and 2LM
based on their ranking history. In this paper, we refer to this
type of policies as HRank or Historical Ranking.

Although these two memory policies have exhibited promis-
ing results, we show that neither policy sustains high per-
formance and, at the same time, low energy consumption
across a range of high-performance computing (HPC) work-
loads. Table 1 shows the memory bandwidth and energy
consumption of two HPC applications using these policies
(we describe these experiments in Section 4). For pF3D,
PCache is better than HRank from an energy consumption
point of view. However, for LULESH, HRank is better be-
cause it provides almost the same performance as PCache
while using less energy. As we will demonstrate later, the
performance and energy characteristics of these policies are
application dependent. For example, when data reuse is
low, PCache may result in excessive data migrations, while
HRank can save energy by delaying such migrations and di-
rectly accessing the 2LM. These observations motivate our
investigation toward more e�ective management policies of
heterogeneous memory systems.

Table 1: Performance and energy of pF3D and
LULESH under two memory policies.

Application Policy Bandwidth Energy

pF3D
PCache 7.43 GB/sec 167.6 J
HRank 11.49 GB/sec 218.0 J

LULESH
PCache 7.91 GB/sec 192.6 J
HRank 7.99 GB/sec 157.3 J

We faced two significant challenges in this work. First,
the number of tools available to study multi-level memories
is insu�cent to analyze and compare memory management
policies for application simulations. And, second, the lim-
ited guidance and insights into the impact of heterogenous
memories on the performance, power, and energy consump-
tion of applications.

In the first part of this paper, we present a trace-based
simulator called HMsim to simulate multi-level, heteroge-
neous memory systems. It leverages well-known simulation
components: the AMD SimNowTM simulator1 for proces-

1http://developer.amd.com/tools-and-sdks/
cpu-development/simnow-simulator/

sor simulation and the University of Maryland’s DRAM-
Sim [20] for the simulation of each level of memory. We
execute an application on the AMD SimNow simulator to
generate memory traces for each level of memory and, then,
these traces are fed to di�erent instances of DRAMSim to
obtain memory performance and energy characteristics. For
the second memory level, we re-architected DRAMSim to
simulate an emerging PCM memory.

In the second part of the paper, we propose HpMC (Hy-
brid Policies Memory Controller), a new memory controller
design that selectively employs the PCache and HRank poli-
cies to deliver better performance and lower energy con-
sumption. HpMC implements a policy switching engine and
several new components that extend a single-level MC to fa-
cilitate switching policies and migrating pages between 1LM
and 2LM. In addition, HpMC implements an energy-aware
scheme that periodically analyzes temporal locality based on
reuse distance and uses the result as a guide to switch be-
tween PCache and HRank for energy optimization. HpMC
is a co-designed hardware-software mechanism that manages
memory at a page granularity. In the HMsim system, HpMC
is implemented in the AMD SimNow simulator to interface
the two memory levels simulated by DRAMSim.

We use pF3D and LULESH, two HPC applications of in-
terest to the U.S. Department of Energy, to understand how
PCache and HRank impact performance and energy. We
also analyze the spatial and temporal locality of numerous,
diverse memory access patterns collected from the CORAL
benchmarks2 and lmbench [11]. These experiments guide
the design of HpMC, our energy-aware memory controller.
HpMC reduces energy consumption from 13% to 45% on
our suite of applications compared to well-know two-level
management policies, while providing almost the same band-
width and larger capacity than a DRAM-only system.

The contributions of this work are as follows:

• A heterogeneous memory simulator designed to ana-
lyze memory performance and energy in a two-level
memory system. It couples fast processor simulation
with detailed memory simulation. We validate this in-
frastructure against two real compute systems.

• A memory controller design to enable switching be-
tween memory policies to deliver high performance and
energy e�ciency. Our empirical findings suggest that
no single policy delivers the best performance and en-
ergy consumption for a range of HPC workloads.

• A new energy-aware scheme that dynamically switches
between memory management policies to optimize for
energy-e�ciency based on the temporal locality of ap-
plications.

• Temporal locality of applications is an e�ective metric
to guide a two-level memory management system for
performance and energy considerations.

2. HPMC DESIGN
Figure 2 shows a block diagram of the major components

of our hybrid policies memory controller, HpMC. HpMC is
designed to process read and write requests from the last-
level cache (LLC) and route requests to specific memory

2https://asc.llnl.gov/CORAL-benchmarks/

Figure 2. The two architectures of hybrid DRAM and PCM
memory, reproduced from Su et al. in MemSys 2015 [18].

Su et al. showed two example applications. pF3D has good
locality and therefore better performance and lower energy
in the vertical PCache than in the horizontal HRank, while
LULESH has poor locality, so PCache is not e�ective, and as
a result, HRank is more energy e�cient. Su et al. developed
a new memory controller called HpMC to switch between
PCache an HRank and make the best choice for each appli-
cation.
The study by Su et al. shows convincingly that neither

PCache or HRank is su�cient to achieve both high perfor-
mance and energy e�ciency across di�erent workloads. Fol-
lowing their approach of combining existing solutions, we
next develop a new technique that provides a greater range
of solution choices.

2.2 Fraction Cache
A fraction cache divides the program data into fractions. In
the basic design, we randomly divide program data into two
fractions and store them in two types of memories: DRAM
and PCM. One fraction is cached in DRAM and evicted to
PCM. The other fraction is stored directly in PCM. We may
distinguish by calling them the cached fraction and the un-
cached fraction.

A fraction cache has the following parameters:
• Total data sizem, the unit of which is usually a page.
• The cached fraction szfr, which is a size between 0 and
m. The cached fraction uses DRAM as the cache and
PCM the target of eviction.
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as speci�cations from a user, expressing local constraint for
each memory.
From the outset, virtual memory is the abstraction and

optimized use of actual memories. The goal of a memory
equalizer is to manage more diverse and complex memories.

This shift from SP to EQ is to address two challenges. First,
a memory equalizer performs lateral memory management.
In EQ, an application stores its data laterally in di�erent
types of memories. In comparison, SP manages just one type
of fast memory. In EQ, memory allocation must be tuned
for all memory types. In SP, the trade-o� happens mainly
between capacity and throughput. In EQ, each memory type
has di�erent strength and weakness compared to DRAM
and requires di�erent trade-o�s. Recent examples include
the trade o� between energy and speed (see Section 2.1) and
between latency and bandwidth [14].2
Second, an equalizer serves multiple objectives. There

are measures such as performance, power, persistence and
lifetime, in which no one strictly dominates the rest. Each
speci�c problem may still have a single goal as a weighted
mixture of multiple objectives, but the weights in the mix-
ture may change from system to system, user to user, and
application to application. A general solution should allow
optimization for an arbitrarily weighted objective (or tell the
user if no such solution exists).
This position paper starts a tentative step in this new di-

rection. As the �rst step, we present an abstract design called
fraction cache. It divides program data into two parts: the
cached fraction and the uncached fraction. For the �rst frac-
tion, it uses the familiar cache mechanisms to dynamically
place data on two memories and move data between them.
Given the size of the memories, i.e. the cache size, it uses the
existing techniques of cache modeling to predict the access
at each memory and the amount of data migration.

The fraction cache creates a parameterized solution space:
a memory equalizer can choose how many fractions to use,
which fraction uses which memories, and at what memory
sizes. The creation of this solution space is the key to solve
EQ. First, the fraction cache is �exible. The large solution
space is likely to contain a good solution that satis�es a
complex objective. Second, the fraction cache predicts the
quality of all solutions and uses the prediction to �nd the
best one. We call the latter deductive optimization, since the
result is deduced rather than obtained through testing.
The rest of the paper is organized as follows. Section 2

presents the fraction cache and shows that it is general, �exi-
ble, and more importantly, permits multi-objective optimiza-
tion. Section 3 evaluates how the fraction cache may reduce
the DRAM demand in a set of test programs. Finally, the last
two sections discuss related work and summarize.

2Ramos and Hoe�er showed that although the integrated Micron Multi
Channel DRAM (MCDRAM) on Intel Knight Landing has much higher
bandwidth than DRAM, it also has slightly higher access latency.

2 Fraction Cache Theory and Optimization
This section �rst reviews a previous study, then shows the
fraction cache and its parameterized solution space, and
�nally its deductive optimization.

2.1 Motivation
In the �rst MEMSYS conference, Su et al. presented a study
of two architectures of hybrid DRAM and PCMmemory [18].
As shown in Figure 2, reproduced from the original paper,
the �rst architecture uses DRAM as the cache of PCM, and
the second organizes DRAM and PCM laterally. They called
them Page Cache and Historical Ranking, or PCache and
HRank in their paper.
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ABSTRACT
DRAM technology faces density and power challenges to in-
crease capacity because of limitations of physical cell design.
To overcome these limitations, system designers are explor-
ing alternative solutions that combine DRAM and emerg-
ing NVRAM technologies. Previous work on heterogeneous
memories focuses, mainly, on two system designs: PCache,
a hierarchical, inclusive memory system, and HRank, a flat,
non-inclusive memory system. We demonstrate that neither
of these designs can universally achieve high performance
and energy e�ciency across a suite of HPC workloads. In
this work, we investigate the impact of a number of multi-
level memory designs on the performance, power, and energy
consumption of applications. To achieve this goal and over-
come the limited number of available tools to study heteroge-
neous memories, we created HMsim, an infrastructure that
enables n-level, heterogeneous memory studies by leverag-
ing existing memory simulators. We, then, propose HpMC,
a new memory controller design that combines the best as-
pects of existing management policies to improve perfor-
mance and energy. Our energy-aware memory management
system dynamically switches between PCache and HRank
based on the temporal locality of applications. Our results
show that HpMC reduces energy consumption from 13% to
45% compared to PCache and HRank, while providing the
same bandwidth and higher capacity than a conventional
DRAM system.
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•Hardware � Emerging architectures; Platform power
issues; Memory and dense storage; •Software and its en-
gineering � Main memory;
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1. INTRODUCTION
While memory bandwidth has increased over the years,

new challenges have emerged as system designers attempt
to increase DRAM capacity to meet the demand of applica-
tions within a reasonable power budget. With large-scale,
in-memory data analytics now driving the demand for mem-
ory capacity, bandwidth, and latency, traditional DRAM
technologies are insu�cient because of high static power con-
sumption, limited capacitor downscaling and limited band-
width scaling from single-level designs [23].

Earlier research to overcome DRAM’s power limitations [4,
13, 17, 18, 27] proposed heterogeneous memory systems
that combine DRAM, for performance, with non-volatile
RAM (NVRAM) memory, for power-conscious capacity scal-
ing. NVRAM technologies include phase change memory
(PCM) [25] and STT-RAM [2]. These heterogeneous de-
signs include new memory management policies to improve
performance and reduce energy consumption, using two fun-
damental memory organizations (see Figure 1).

1LM

2LM

Processor

1LM 2LM

Processor

(a) PCache (b)HRank

Figure 1: Heterogeneous main memory organiza-
tions: (a) PCache, a hierarchical, inclusive system,
and (b) HRank, a flat, exclusive system.

Figure 1(a) shows a hierarchical, inclusive system. The
first level of main memory, 1LM, is used as a cache for the
second level, 2LM. This is similar to existing cache hierar-

chies in current systems but for main memory. The 1LM
memory is not visible to the operating system (OS) and is
managed by the memory controller (MC). Memory manage-
ment policies for this design [10, 17] treat 1LM as an as-
sociative cache and use LRU replacement to migrate pages.
In this paper, we refer to these class of policies as PCache
or Page Cache for main memory. Note that PCache is dif-
ferent from the page cache term used in kernel file systems
referring to a memory cache to store recent data from disk.

Figure 1(b) shows a flat, exclusive system. In this de-
sign, 1LM and 2LM are exclusive physical memory spaces.
The OS manages both memory spaces while the MC su-
pervises page migrations between them. Several policies to
migrate pages in this flat design have appeared recently [18,
27]. These policies use the following principles: (1) Place
performance-critical pages in 1LM and non-performance-
critical pages in 2LM, to achieve a combination of overall
high performance and low power dissipation; (2) Rank pages
based on history of the number of references and access re-
cency. (3) Periodically migrate pages between 1LM and 2LM
based on their ranking history. In this paper, we refer to this
type of policies as HRank or Historical Ranking.

Although these two memory policies have exhibited promis-
ing results, we show that neither policy sustains high per-
formance and, at the same time, low energy consumption
across a range of high-performance computing (HPC) work-
loads. Table 1 shows the memory bandwidth and energy
consumption of two HPC applications using these policies
(we describe these experiments in Section 4). For pF3D,
PCache is better than HRank from an energy consumption
point of view. However, for LULESH, HRank is better be-
cause it provides almost the same performance as PCache
while using less energy. As we will demonstrate later, the
performance and energy characteristics of these policies are
application dependent. For example, when data reuse is
low, PCache may result in excessive data migrations, while
HRank can save energy by delaying such migrations and di-
rectly accessing the 2LM. These observations motivate our
investigation toward more e�ective management policies of
heterogeneous memory systems.

Table 1: Performance and energy of pF3D and
LULESH under two memory policies.

Application Policy Bandwidth Energy

pF3D
PCache 7.43 GB/sec 167.6 J
HRank 11.49 GB/sec 218.0 J

LULESH
PCache 7.91 GB/sec 192.6 J
HRank 7.99 GB/sec 157.3 J

We faced two significant challenges in this work. First,
the number of tools available to study multi-level memories
is insu�cent to analyze and compare memory management
policies for application simulations. And, second, the lim-
ited guidance and insights into the impact of heterogenous
memories on the performance, power, and energy consump-
tion of applications.

In the first part of this paper, we present a trace-based
simulator called HMsim to simulate multi-level, heteroge-
neous memory systems. It leverages well-known simulation
components: the AMD SimNowTM simulator1 for proces-

1http://developer.amd.com/tools-and-sdks/
cpu-development/simnow-simulator/

sor simulation and the University of Maryland’s DRAM-
Sim [20] for the simulation of each level of memory. We
execute an application on the AMD SimNow simulator to
generate memory traces for each level of memory and, then,
these traces are fed to di�erent instances of DRAMSim to
obtain memory performance and energy characteristics. For
the second memory level, we re-architected DRAMSim to
simulate an emerging PCM memory.

In the second part of the paper, we propose HpMC (Hy-
brid Policies Memory Controller), a new memory controller
design that selectively employs the PCache and HRank poli-
cies to deliver better performance and lower energy con-
sumption. HpMC implements a policy switching engine and
several new components that extend a single-level MC to fa-
cilitate switching policies and migrating pages between 1LM
and 2LM. In addition, HpMC implements an energy-aware
scheme that periodically analyzes temporal locality based on
reuse distance and uses the result as a guide to switch be-
tween PCache and HRank for energy optimization. HpMC
is a co-designed hardware-software mechanism that manages
memory at a page granularity. In the HMsim system, HpMC
is implemented in the AMD SimNow simulator to interface
the two memory levels simulated by DRAMSim.

We use pF3D and LULESH, two HPC applications of in-
terest to the U.S. Department of Energy, to understand how
PCache and HRank impact performance and energy. We
also analyze the spatial and temporal locality of numerous,
diverse memory access patterns collected from the CORAL
benchmarks2 and lmbench [11]. These experiments guide
the design of HpMC, our energy-aware memory controller.
HpMC reduces energy consumption from 13% to 45% on
our suite of applications compared to well-know two-level
management policies, while providing almost the same band-
width and larger capacity than a DRAM-only system.

The contributions of this work are as follows:

• A heterogeneous memory simulator designed to ana-
lyze memory performance and energy in a two-level
memory system. It couples fast processor simulation
with detailed memory simulation. We validate this in-
frastructure against two real compute systems.

• A memory controller design to enable switching be-
tween memory policies to deliver high performance and
energy e�ciency. Our empirical findings suggest that
no single policy delivers the best performance and en-
ergy consumption for a range of HPC workloads.

• A new energy-aware scheme that dynamically switches
between memory management policies to optimize for
energy-e�ciency based on the temporal locality of ap-
plications.

• Temporal locality of applications is an e�ective metric
to guide a two-level memory management system for
performance and energy considerations.

2. HPMC DESIGN
Figure 2 shows a block diagram of the major components

of our hybrid policies memory controller, HpMC. HpMC is
designed to process read and write requests from the last-
level cache (LLC) and route requests to specific memory

2https://asc.llnl.gov/CORAL-benchmarks/

Figure 2. The two architectures of hybrid DRAM and PCM
memory, reproduced from Su et al. in MemSys 2015 [18].

Su et al. showed two example applications. pF3D has good
locality and therefore better performance and lower energy
in the vertical PCache than in the horizontal HRank, while
LULESH has poor locality, so PCache is not e�ective, and as
a result, HRank is more energy e�cient. Su et al. developed
a new memory controller called HpMC to switch between
PCache an HRank and make the best choice for each appli-
cation.
The study by Su et al. shows convincingly that neither

PCache or HRank is su�cient to achieve both high perfor-
mance and energy e�ciency across di�erent workloads. Fol-
lowing their approach of combining existing solutions, we
next develop a new technique that provides a greater range
of solution choices.

2.2 Fraction Cache
A fraction cache divides the program data into fractions. In
the basic design, we randomly divide program data into two
fractions and store them in two types of memories: DRAM
and PCM. One fraction is cached in DRAM and evicted to
PCM. The other fraction is stored directly in PCM. We may
distinguish by calling them the cached fraction and the un-
cached fraction.

A fraction cache has the following parameters:
• Total data sizem, the unit of which is usually a page.
• The cached fraction szfr, which is a size between 0 and
m. The cached fraction uses DRAM as the cache and
PCM the target of eviction.

2
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• for fully-associative LRU cache of size c 
• Cache modeling becomes function operations 

• mr(c) is the derivative of fp(x), or in Leibniz’s notation
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both DRAM and PCM, so we havem = szdram + szpcm. The
cache fraction szfr is stored partly in DRAM szdram and partly
in PCM.3 The vertical dotted line in Figure 3 marks the sepa-
ration in PCM between the cache fraction and the uncached
fraction.

proc

DRAM
szdram

PCM
szpcm

cached fraction szfr uncached

data size m

Figure 3. A fraction cache divides program data into the
cached fraction and the uncached fraction. It stores the
cached fraction in DRAM and PCM and the uncached frac-
tion in PCM.

The memory organization is �at. At any time, the program
data is partitioned between DRAM and PCM, and each is
accessed directly. An access to the data of the cache fraction
will happen in DRAM, if the access is a cache hit, and in
PCM, if it is a cache miss. At a cache miss, the missed data is
also promoted into DRAM, incurring an eviction in DRAM if
it is full. E�ectively, the cache replacement policy is used to
control data migration between DRAM and PCM. The new
lateral memory management by the fraction cache reuses
the familiar solution of cache design. A di�erence is that in
a conventional cache, the miss data is fetched through the
cache. In the fraction cache, the miss data is fetched from
PCM directly, at the same time of the migration of the missed
data to DRAM.
The key novelty of the design resides in its two parame-

ters, szfr, szdram, which make the fraction cache not a single
solution but a collection of solutions, one for each parameter
combination.

By choosing the right parameters, the fraction cache can
implement the two designs of Su et al., discussed in Sec-
tion 2.1. If the fraction szfr =m, we have the e�ect of vertical
PCache. In actual design, the fraction cache has two di�er-
ences compared to PCache. First, the fraction cache is ex-
clusive, while PCache is inclusive. Second, at a DRAM miss,
the data is fetched directly from PCM, and at the same time,
the data page is migrated from PCM to DRAM. If the cached
3The two-level, DRAM-PCM cache may be inclusive or exclusive. This paper
assumes an exclusive cache, which consumes less PCM but incurs more
write backs compared to an inclusive cache. The performance modeling
discussed later in the paper is the same for either the exclusive or the
inclusive cache.

fraction �ts entirely in DRAM szfr = szdram, then we have
the e�ect of horizontal HRank without page migration.4

The performance of fraction cache can be e�ciently mod-
eled. Next we present a technique based on a recent locality
theory.

2.3 Predicting Cache Performance Using Footprint
Xiang et al. developed the higher-order theory of locality
(HOTL), which de�nes a set of metrics and uses them to
compute the miss ratio in shared cache [25]. We review the
HOTL theory here and then use it to model and optimize
the performance of the fraction cache. In HOTL, the most
important metric is the footprint.
In an execution trace, each time window is represented

by (t ,x), where t is the end position and x the window
length. The number of distinct elements in the window is
the working-set size �(t ,x), as de�ned �rst by Denning [7].
The working-set size may vary from window to window,
the footprint is its average. For each x , fp(x) is the average
working-set size of all windows of length x , i.e., the total
working-set size divided by the number of length-x windows
as shown by the following equation:

fp(x) = 1
n � x + 1

n’
t=x

�(t ,x) (1)

The footprint is a function fp(x), and its parameterx a timescale
such that 0  x  n, where the largest timescale n is the
trace length.

For fully-associative LRU cache, the miss ratiomr(c) is the
(discrete) derivative of the footprint function. The precise
formula has two calculations as follows. Given cache size c ,
it �rst �nds the timescale x and then takes the derivative at
x .

mr(c) = fp(x + 1) � fp(x) where c = fp(x)

In this paper, we refer to it as the HOTL conversion and
use a more compact representation based on the Leibniz’s
notation, where the two calculations are in the same equation
separated by the vertical bar.

mr(c) = d
dx fp(x)

�����
fp(x )=c

(2)

As an example illustration, the following �gure shows a
simple access trace, its footprint, and the miss ratios com-
puted using the HOTL conversion.

4In HRank of Su et al. [20], periodically themost accessed pages aremigrated
from PCM to DRAM.

3



Chen Ding, University of Rochester

Traffic Modeling

17

access trace: a b c

(a) An access trace

timescale x 0 1 2 3
fp(x) 0 1 2 3

(b) Footprint

cache size c 0 1 2
mr(c) 100% 100% 100%

(c) Miss ratios

Figure 4. Example footprint and HOTL conversion

In 1972, Denning and Schwartz were the �rst to estimate
the LRU cache miss ratio by the slope of the mean working-
set size [10]. The HOTL conversion has the same form but
using the footprint.5 The mean working-set size was ini-
tially de�ned as a limit value [10]. See Xiang et al. [25] for a
comparison between HOTL and the working-set theory.
The HOTL theory includes e�cient footprint measure-

ment, concavity of the footprint (hence monotonicity of the
miss ratio), and the correctness condition [24, 25]. This paper
builds on these results and will use the HOTL conversion to
model performance and drive optimization.

2.4 Fraction Cache Performance
The performance is measured by data tra�c. We consider
three types of tra�c, one for each connection between the
processor, DRAM, and PCM, shown in Figure 3: the tra�c
trfcdram between the processor and DRAM, trfcpcm between
the processor and PCM, and trfcmiss between DRAM and
PCM. The last one trfcmiss is the misses in the fraction cache.
It is also the data migration from PCM to DRAM.

For simplicity, we consider only data reads6 and only the
volume of data reads. The performance is measured by the
amount of read tra�c from DRAM and PCM and the tra�c
of data misses in DRAM. These three types of tra�c are
shown in Figure 5.
In fraction cache, the cached data is accessed in DRAM

if it is a hit. Otherwise, the missed data is accessed directly
in PCM, not indirectly through DRAM. However, another
copy of the missed data is transferred to DRAM to update
the content of the DRAM cache. Hence, the DRAM tra�c
includes the accesses to the cached fraction but does not
include the misses, and the PCM tra�c includes all accesses
to the uncached fraction and all the misses.

5HOTL conversion is de�ned for all execution traces. Take the simple
example in Figure 4. Since it has no reuses, it is unclear how the previous
working-set theory de�nes its means working-set size, but its footprint has
a clear de�nition.
6Data writebacks in cache can be modeled using write locality developed
by Chen et al. [5].

proc

DRAM
szdram

PCM
szpcm

cached fraction szfr uncached

data size m

proc

DRAM
szdram

PCM
szpcm

DRAM traffic 
trfcdram

PCM traffic 
trfcpcm

data migration
trfcmiss

Figure 5. The performance of a fraction cache is measured
by the communication between the processor and DRAM,
between the processor and PCM, and data migration be-
tween DRAM and PCM. This position paper simpli�es and
considers only reads and misses.

Using the footprint theory in Section 2.3, we compute the
performance of the fraction cache as follows. Let h(x) be the
footprint of the cached data. We �rst compute the miss ratio
mr(szdram) using HOTL for any szdram � 0. The miss tra�c
is naturally the miss ratio times n.7 Let r = szfr

m be the ratio
of the cached fraction. All types of tra�c are computed as
follows:

h(x) = r fp(x)

mr(szdram) = d
dx h(x)

�����
h(x )=szdram

trfcmiss = mr(szdram) ⇤ n
trfcdram = r ⇤ n � trfcmiss

trfcpcm = (1 � r ) ⇤ n + trfcmiss = n � trfcdram

r =
trfcdram + trfcmiss

n

where r is the cached fraction.

2.5 Fraction Cache Optimization
The key novelty of the fraction-cache design is its parameter-
ized solution space, which has fully predictable performance.
The bene�t is two fold: to make it �exible and to enable
optimization.
The fraction cache is a versatile tool for lateral memory

management. The previous section has shown how to divide
data dynamically between DRAM and PCM. The previous
solution was a two-fraction cache. On a machine with three
types of memories, HBM, DRAM and PCM, we divide pro-
gram data into three fractions. There are at least two choices
to assign these fractions. The �rst fraction is cached in HBM
and evicted to DRAM, the second fraction cached in DRAM
and evicted to PCM, and the last fraction is stored only in
7In our implementation described in Section 3, the fraction data foot-
print h(x ) uses the logical clock of all n accesses, and the miss tra�c
is mr(szdram) ⇤ n. If h(x ) uses the logical clock of only the accesses to the
data fraction, the miss tra�c would be computed as mr(szdram) ⇤ n ⇤ r .
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In 1972, Denning and Schwartz were the �rst to estimate
the LRU cache miss ratio by the slope of the mean working-
set size [10]. The HOTL conversion has the same form but
using the footprint.5 The mean working-set size was ini-
tially de�ned as a limit value [10]. See Xiang et al. [25] for a
comparison between HOTL and the working-set theory.
The HOTL theory includes e�cient footprint measure-

ment, concavity of the footprint (hence monotonicity of the
miss ratio), and the correctness condition [24, 25]. This paper
builds on these results and will use the HOTL conversion to
model performance and drive optimization.

2.4 Fraction Cache Performance
The performance is measured by data tra�c. We consider
three types of tra�c, one for each connection between the
processor, DRAM, and PCM, shown in Figure 3: the tra�c
trfcdram between the processor and DRAM, trfcpcm between
the processor and PCM, and trfcmiss between DRAM and
PCM. The last one trfcmiss is the misses in the fraction cache.
It is also the data migration from PCM to DRAM.

For simplicity, we consider only data reads6 and only the
volume of data reads. The performance is measured by the
amount of read tra�c from DRAM and PCM and the tra�c
of data misses in DRAM. These three types of tra�c are
shown in Figure 5.
In fraction cache, the cached data is accessed in DRAM

if it is a hit. Otherwise, the missed data is accessed directly
in PCM, not indirectly through DRAM. However, another
copy of the missed data is transferred to DRAM to update
the content of the DRAM cache. Hence, the DRAM tra�c
includes the accesses to the cached fraction but does not
include the misses, and the PCM tra�c includes all accesses
to the uncached fraction and all the misses.

5HOTL conversion is de�ned for all execution traces. Take the simple
example in Figure 4. Since it has no reuses, it is unclear how the previous
working-set theory de�nes its means working-set size, but its footprint has
a clear de�nition.
6Data writebacks in cache can be modeled using write locality developed
by Chen et al. [5].
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Figure 5. The performance of a fraction cache is measured
by the communication between the processor and DRAM,
between the processor and PCM, and data migration be-
tween DRAM and PCM. This position paper simpli�es and
considers only reads and misses.

Using the footprint theory in Section 2.3, we compute the
performance of the fraction cache as follows. Let h(x) be the
footprint of the cached data. We �rst compute the miss ratio
mr(szdram) using HOTL for any szdram � 0. The miss tra�c
is naturally the miss ratio times n.7 Let r = szfr

m be the ratio
of the cached fraction. All types of tra�c are computed as
follows:

h(x) = r fp(x)

mr(szdram) = d
dx h(x)

�����
h(x )=szdram

trfcmiss = mr(szdram) ⇤ n
trfcdram = r ⇤ n � trfcmiss

trfcpcm = (1 � r ) ⇤ n + trfcmiss

= n � trfcdram

r =
trfcdram + trfcmiss

n

where r is the cached fraction.

2.5 Fraction Cache Optimization
The key novelty of the fraction-cache design is its parameter-
ized solution space, which has fully predictable performance.
The bene�t is two fold: to make it �exible and to enable
optimization.
The fraction cache is a versatile tool for lateral memory

management. The previous section has shown how to divide
data dynamically between DRAM and PCM. The previous
solution was a two-fraction cache. On a machine with three
types of memories, HBM, DRAM and PCM, we divide pro-
gram data into three fractions. There are at least two choices
to assign these fractions. The �rst fraction is cached in HBM
and evicted to DRAM, the second fraction cached in DRAM
7In our implementation described in Section 3, the fraction data foot-
print h(x ) uses the logical clock of all n accesses, and the miss tra�c
is mr(szdram) ⇤ n. If h(x ) uses the logical clock of only the accesses to the
data fraction, the miss tra�c would be computed as mr(szdram) ⇤ n ⇤ r .
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In 1972, Denning and Schwartz were the �rst to estimate
the LRU cache miss ratio by the slope of the mean working-
set size [10]. The HOTL conversion has the same form but
using the footprint.5 The mean working-set size was ini-
tially de�ned as a limit value [10]. See Xiang et al. [25] for a
comparison between HOTL and the working-set theory.
The HOTL theory includes e�cient footprint measure-

ment, concavity of the footprint (hence monotonicity of the
miss ratio), and the correctness condition [24, 25]. This paper
builds on these results and will use the HOTL conversion to
model performance and drive optimization.

2.4 Fraction Cache Performance
The performance is measured by data tra�c. We consider
three types of tra�c, one for each connection between the
processor, DRAM, and PCM, shown in Figure 3: the tra�c
trfcdram between the processor and DRAM, trfcpcm between
the processor and PCM, and trfcmiss between DRAM and
PCM. The last one trfcmiss is the misses in the fraction cache.
It is also the data migration from PCM to DRAM.

For simplicity, we consider only data reads6 and only the
volume of data reads. The performance is measured by the
amount of read tra�c from DRAM and PCM and the tra�c
of data misses in DRAM. These three types of tra�c are
shown in Figure 5.
In fraction cache, the cached data is accessed in DRAM

if it is a hit. Otherwise, the missed data is accessed directly
in PCM, not indirectly through DRAM. However, another
copy of the missed data is transferred to DRAM to update
the content of the DRAM cache. Hence, the DRAM tra�c
includes the accesses to the cached fraction but does not
include the misses, and the PCM tra�c includes all accesses
to the uncached fraction and all the misses.

5HOTL conversion is de�ned for all execution traces. Take the simple
example in Figure 4. Since it has no reuses, it is unclear how the previous
working-set theory de�nes its means working-set size, but its footprint has
a clear de�nition.
6Data writebacks in cache can be modeled using write locality developed
by Chen et al. [5].
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by the communication between the processor and DRAM,
between the processor and PCM, and data migration be-
tween DRAM and PCM. This position paper simpli�es and
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Using the footprint theory in Section 2.3, we compute the
performance of the fraction cache as follows. Let h(x) be the
footprint of the cached data. We �rst compute the miss ratio
mr(szdram) using HOTL for any szdram � 0. The miss tra�c
is naturally the miss ratio times n.7 Let r = szfr

m be the ratio
of the cached fraction. All types of tra�c are computed as
follows:

h(x) = r fp(x)

mr(szdram) = d
dx h(x)
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where r is the cached fraction.

2.5 Fraction Cache Optimization
The key novelty of the fraction-cache design is its parameter-
ized solution space, which has fully predictable performance.
The bene�t is two fold: to make it �exible and to enable
optimization.
The fraction cache is a versatile tool for lateral memory

management. The previous section has shown how to divide
data dynamically between DRAM and PCM. The previous
solution was a two-fraction cache. On a machine with three
types of memories, HBM, DRAM and PCM, we divide pro-
gram data into three fractions. There are at least two choices
to assign these fractions. The �rst fraction is cached in HBM
and evicted to DRAM, the second fraction cached in DRAM
and evicted to PCM, and the last fraction is stored only in
7In our implementation described in Section 3, the fraction data foot-
print h(x ) uses the logical clock of all n accesses, and the miss tra�c
is mr(szdram) ⇤ n. If h(x ) uses the logical clock of only the accesses to the
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Evaluation

• Apache Cassandra  
• open-source NoSQL db 
• 17 GB data 
• 7% DRAM portion at 10% 

migration traffic 
• 60% fraction cached 

• 0.6% DRAM portion at 
near 50% 
• 100% fraction cached 

• Other tests 
• 3 PARSEC, 3 NPB 
• at least 500MB data 

• All run with 8 threads
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Figure 6. Minimal DRAM portion (�-axis) computed by deductive optimization for exact migration cost (x-axis) ranging from
0% to 50% of accesses. In CG,BT, the minimal DRAM portion di�ers for bounded migration cost and is shown by dotted lines.

3.8% of the program data size and 24.7% on average. If the
migration is within 10% of accesses, the DRAM need is 16%
for canneal, 5% for freqmine, and 7% for Cassandra, which
means a reduction by a factor of 3, 10, and 7 respectively.
Most graphs show a monotone drop of DRAM portion

as more migration is permitted. Four programs have a clear
in�ection point where the rate of DRAM portion reduction
is steep before the in�ection and �at after the in�ection.

Di�erent DRAMportion reductions are caused by di�erent
program locality. Figure 7 shows the miss ratio curve for
three programs. Cassandra has good locality, which means

that the miss ratio drops precipitously to near zero when the
cache size increases. BT has poor locality, and its miss ratio
decreases somewhat linearly when the cache size increases.
The case of LU is in between. In Cassandra, the good locality
makes the fraction cache e�ective at reducing the DRAM
portion. The in�ection point in the miss ratio curve leads to
the in�ection point in the minimal DRAM portion. Cassandra
is representative of the group of programs that also include
the three PARSEC benchmarks.
In two programs, CG,BT, the minimal DRAM portion is

not monotone. At some amounts of migration tra�c, it needs
7
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Figure 7. Miss ratio curve of Cassandra, LU and BT, assuming 50% data is cached.

5 Summary
This paper has presented a vision of memory equalizer for
lateral memory management. The key is an abstract design
called fraction cache which is organized as a two level ex-
clusive cache. Its parameters, the fraction, the size of the
memory, the tra�c of processor and inter-memory commu-
nication, encompasses a large solution space. In practice,
a user may specify performance objectives and leave the
tuning and optimization to an automatic tool. As a demon-
stration, we use fraction cache to minimize the need for
DRAM while limiting the cost of data migration. When the
migration is bounded to no more than 20%, the DRAM size
can be reduced to as low as 3.8% of the program data size
and 24.7% on average.
We believe that our technique is the �rst to observe and

characterize the in�ection points in the trade o� between
DRAM size and migration tra�c. We expect that similar pat-
terns happen in other problems of lateral memory manage-
ment, and the fraction cache and its deductive optimization
will be a useful tool.
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Figure 6. Minimal DRAM portion (�-axis) computed by deductive optimization for exact migration cost (x-axis) ranging from
0% to 50% of accesses. In CG,BT, the minimal DRAM portion di�ers for bounded migration cost and is shown by dotted lines.

3.8% of the program data size and 24.7% on average. If the
migration is within 10% of accesses, the DRAM need is 16%
for canneal, 5% for freqmine, and 7% for Cassandra, which
means a reduction by a factor of 3, 10, and 7 respectively.
Most graphs show a monotone drop of DRAM portion

as more migration is permitted. Four programs have a clear
in�ection point where the rate of DRAM portion reduction
is steep before the in�ection and �at after the in�ection.

Di�erent DRAMportion reductions are caused by di�erent
program locality. Figure 7 shows the miss ratio curve for
three programs. Cassandra has good locality, which means

that the miss ratio drops precipitously to near zero when the
cache size increases. BT has poor locality, and its miss ratio
decreases somewhat linearly when the cache size increases.
The case of LU is in between. In Cassandra, the good locality
makes the fraction cache e�ective at reducing the DRAM
portion. The in�ection point in the miss ratio curve leads to
the in�ection point in the minimal DRAM portion. Cassandra
is representative of the group of programs that also include
the three PARSEC benchmarks.
In two programs, CG,BT, the minimal DRAM portion is

not monotone. At some amounts of migration tra�c, it needs
7

• DRAM reduction vs. miss ratio 
• good locality leads to effective reduction
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• Poor locality means ineffective reduction
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Figure 7. Miss ratio curve of Cassandra, LU and BT, assuming 50% data is cached.

5 Summary
This paper has presented a vision of memory equalizer for
lateral memory management. The key is an abstract design
called fraction cache which is organized as a two level ex-
clusive cache. Its parameters, the fraction, the size of the
memory, the tra�c of processor and inter-memory commu-
nication, encompasses a large solution space. In practice,
a user may specify performance objectives and leave the
tuning and optimization to an automatic tool. As a demon-
stration, we use fraction cache to minimize the need for
DRAM while limiting the cost of data migration. When the
migration is bounded to no more than 20%, the DRAM size
can be reduced to as low as 3.8% of the program data size
and 24.7% on average.
We believe that our technique is the �rst to observe and

characterize the in�ection points in the trade o� between
DRAM size and migration tra�c. We expect that similar pat-
terns happen in other problems of lateral memory manage-
ment, and the fraction cache and its deductive optimization
will be a useful tool.
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Figure 6. Minimal DRAM portion (�-axis) computed by deductive optimization for exact migration cost (x-axis) ranging from
0% to 50% of accesses. In CG,BT, the minimal DRAM portion di�ers for bounded migration cost and is shown by dotted lines.

3.8% of the program data size and 24.7% on average. If the
migration is within 10% of accesses, the DRAM need is 16%
for canneal, 5% for freqmine, and 7% for Cassandra, which
means a reduction by a factor of 3, 10, and 7 respectively.
Most graphs show a monotone drop of DRAM portion

as more migration is permitted. Four programs have a clear
in�ection point where the rate of DRAM portion reduction
is steep before the in�ection and �at after the in�ection.

Di�erent DRAMportion reductions are caused by di�erent
program locality. Figure 7 shows the miss ratio curve for
three programs. Cassandra has good locality, which means

that the miss ratio drops precipitously to near zero when the
cache size increases. BT has poor locality, and its miss ratio
decreases somewhat linearly when the cache size increases.
The case of LU is in between. In Cassandra, the good locality
makes the fraction cache e�ective at reducing the DRAM
portion. The in�ection point in the miss ratio curve leads to
the in�ection point in the minimal DRAM portion. Cassandra
is representative of the group of programs that also include
the three PARSEC benchmarks.
In two programs, CG,BT, the minimal DRAM portion is

not monotone. At some amounts of migration tra�c, it needs
7
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• Non-convexity loses monotonicity
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Figure 7. Miss ratio curve of Cassandra, LU and BT, assuming 50% data is cached.

5 Summary
This paper has presented a vision of memory equalizer for
lateral memory management. The key is an abstract design
called fraction cache which is organized as a two level ex-
clusive cache. Its parameters, the fraction, the size of the
memory, the tra�c of processor and inter-memory commu-
nication, encompasses a large solution space. In practice,
a user may specify performance objectives and leave the
tuning and optimization to an automatic tool. As a demon-
stration, we use fraction cache to minimize the need for
DRAM while limiting the cost of data migration. When the
migration is bounded to no more than 20%, the DRAM size
can be reduced to as low as 3.8% of the program data size
and 24.7% on average.
We believe that our technique is the �rst to observe and

characterize the in�ection points in the trade o� between
DRAM size and migration tra�c. We expect that similar pat-
terns happen in other problems of lateral memory manage-
ment, and the fraction cache and its deductive optimization
will be a useful tool.
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Figure 6. Minimal DRAM portion (�-axis) computed by deductive optimization for exact migration cost (x-axis) ranging from
0% to 50% of accesses. In CG,BT, the minimal DRAM portion di�ers for bounded migration cost and is shown by dotted lines.

3.8% of the program data size and 24.7% on average. If the
migration is within 10% of accesses, the DRAM need is 16%
for canneal, 5% for freqmine, and 7% for Cassandra, which
means a reduction by a factor of 3, 10, and 7 respectively.
Most graphs show a monotone drop of DRAM portion

as more migration is permitted. Four programs have a clear
in�ection point where the rate of DRAM portion reduction
is steep before the in�ection and �at after the in�ection.

Di�erent DRAMportion reductions are caused by di�erent
program locality. Figure 7 shows the miss ratio curve for
three programs. Cassandra has good locality, which means

that the miss ratio drops precipitously to near zero when the
cache size increases. BT has poor locality, and its miss ratio
decreases somewhat linearly when the cache size increases.
The case of LU is in between. In Cassandra, the good locality
makes the fraction cache e�ective at reducing the DRAM
portion. The in�ection point in the miss ratio curve leads to
the in�ection point in the minimal DRAM portion. Cassandra
is representative of the group of programs that also include
the three PARSEC benchmarks.
In two programs, CG,BT, the minimal DRAM portion is

not monotone. At some amounts of migration tra�c, it needs
7
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More Fractions
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HBM DRAM PCM

• Multiple solutions 
• Multiple objectives 

• size, traffic, endurance

• Useful models 
• write locality [MEMSYS’16] 
• cache exclusivity [TACO’17]
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Cache and Memory Optimization

• Higher order theory of locality (HOTL) 
• locality is represented by integer functions 
• cache modeling becomes mathematical, w/ provable properties 

• concavity [ASPLOS’13] 
• composition invariance [USENIX’16] 
• cache exclusivity: correctness/uniqueness [TACO’17] 

• so does cache optimization 
• LAMA: memory allocation in Memcached [USENIX’16] 

• monotonicity implied by optimality 
• Higher order theory of memory demand (HOTM) 

• liveness metrics [ISMM’14] 
• concurrent memory allocation [ISMM’16] 

• symmetry implied by optimality

24
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Concurrent Collections

• CnC 
• separation of what and how 

• domain and tuning specification 
• collections and steps 

• communication centric 
• explicit dependences 
• graph programming model 

• compiled 
• static binding between collections and tuners

25
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Freedom to Optimize

• Existing parallel languages 
• fixed parallelization and data layout 

• OpenMP, CUDA, MPI+X 
• Cilk family 

• fixed data layout 
• Jade and recent DSLs 

• CnC 
• “future proof” 
• only the essential elements 
• e.g. Nick’s hand-on tutorial 

• stencil can be 1D/2D arrays or a hash table

26
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Locality Optimization in CnC

• Static locality analysis 
• footprint and miss ratio curves 

• per step per item 
• Selecting/composing CnC Tuners 

• locality ranking of alternative implementations of each step 
• with parameters 

• combined effect in all steps 
• Optimization 

• formalization of the implementation space 
• search for the best solution 

• lower bound work by Luis et al. 
• performance synthesis
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AI? What about AM?

• Locality theory + deep learning 
• LT to produce traffic numbers 
• DL to map traffic numbers to 

performance 
• Memory and intelligence 

• meta-cognition is how confident 
you are in what you think you 
know 

• it means fluency 
• fluency means efficiency 

• speed of computation 
• speed of data access
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Table 4: Model of Bandwidth Consumption.

Between Node src’s cache and Node dst’s cache

filltime = fill time of src’s cache

request snoops =
P

m homed at dst
requestsm[src]

non-data responses =
P

m homed at src
sharersm[dst]

data responses =
P

i filltime
forwards[(src,dst)][i]

bandwidth consumption = request snoops + request snoops + data responses

Between Node src’s cache and Node dst’s memory
filltime = fill time of src’s cache

writebacks =
P

m homed at dst
writebacksm[src]

memory loads =
P

i� filltime
forwards[(src,dst)][i]

bandwidth consumption = writebacks + memory loads

ment (DP). The performance impact of TP and DP are tightly
coupled together. Therefore prior work mainly optimizes an
iterative fashion. Different from the prior work, our method
decouples these two placements and optimizes them sepa-
rately. For each type of placement, all the candidate choices
are analyzed in batches. In this cause, through this disserta-
tion, we refer the prior iterative method as TPDP n and our
method as TPDP.

The task of TPDP is to balance the bandwidth consump-
tion within the system and maximize the throughput. With
the help of a locality model, we can quantify bandwidth
consumption and throughput. The NUMA machine can be
viewed as a network consisting of on-chip caches and off-
chip memories. Table 4 describes the model of bandwidth
consumption on each link in the network. We further define
the throughput based on the bandwidth consumption:

throughput =
bandwidth capacity

bandwidth consumption

Given a machine configuration (network topology, cache
capacity, bandwidth capacity, etc) and a program’s memory
access stream, we can model the throughput of the intercon-
nect in the system. The interconnect consists of two types
of links: the cache-to-cache links (CC links) and the cache-
to-memory links (CM links). The system throughput as sum
of the smallest throughput over CC links and the smallest
throughput of CM links. TPDP evaluates every placement
plan by their system throughput.

memory
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20,000

21,000
22,000 20,000

memorymemory

memory

42,000

50,000 51,000

51,000

cache-to-memory linkcache-to-cache link

System Throughput  = 16,000 + 42,000 = 58,000

shared cache

shared cache shared cache

shared cache

Figure 4: Example of performance model: The numbers in
the figure represent the throughput of the links.

5. Evaluation
We evaluate TPDP in two aspects:

• The potential performance benefit by using TPDP.
• The overhead of profiling using TPDP.

5.1 Experiment Setup

Benchmark Six OpenMP benchmarks from NAS Parallel
Benchmark Suite (NPB) [? ] were used (BT, CG, FT, LU,
MG and SP). TPDP exposes a set of C interfaces for the
purpose of collecting data at run-time. Therefore we chose
a C implementation of these benchmarks [? ]. We use the C
input size to run the experiments.

Testbed All our experiments were performed on a 12-core
Intel machine (with 2 hyper-threads per core), which con-
sists of two 2.4GHz Intel Xeon E5-2620 processors con-
nected with QPI. Each socket has 6 cores, a shared 15MB
last level cache and a 4GB local DRAM. The bandwidth

6 2016/11/2
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Summary

• Locality Wall 
• parallel, distributed and heterogeneous processing and 

memory 
• data movement is most critical 

• Locality 
• access and timescale locality 
• mathematical relations/properties 

• Memory equalizer 
• utilization, traffic, power, endurance 
• constrained optimization 

• CnC 
• freedom to optimize 
• locality tuners
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